Two-dimensional Ti3C2Tx MXene promotes electrophysiological maturation of neural circuits | Journal of Nanobiotechnology

[ad_1]

  • Bond AM, Ming GL, Song H. Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell. 2015;17(4):385–95.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Piltti KM, Funes GM, Avakian SN, Salibian AA, Huang KI, Carta K, et al. Increasing human neural stem cell transplantation dose alters oligodendroglial and neuronal differentiation after spinal cord injury. Stem Cell Reports. 2017;8(6):1534–48.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nakagomi N, Nakagomi T, Kubo S, Nakano-Doi A, Saino O, Takata M, et al. Endothelial cells support survival, proliferation, and neuronal differentiation of transplanted adult ischemia-induced neural stem/progenitor cells after cerebral infarction. Stem Cells. 2009;27(9):2185–95.

    PubMed 
    Article 

    Google Scholar
     

  • Liu Z, Tang M, Zhao J, Chai R, Kang J. Looking into the future: toward advanced 3D biomaterials for stem-cell-based regenerative medicine. Adv Mater. 2018;30(17):1705388.

    Article 
    CAS 

    Google Scholar
     

  • Li X, Fan C, Xiao Z, Zhao Y, Zhang H, Sun J, et al. A collagen microchannel scaffold carrying paclitaxel-liposomes induces neuronal differentiation of neural stem cells through Wnt/β-catenin signaling for spinal cord injury repair. Biomaterials. 2018;183:114–27.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Watanabe K, Kamiya D, Nishiyama A, Katayama T, Nozaki S, Kawasaki H, et al. Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci. 2005;8(3):288–96.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xiao M, Li X, Song Q, Zhang Q, Lazzarino M, Cheng G, et al. A fully 3D interconnected graphene-carbon nanotube web allows the study of glioma infiltration in bioengineered 3D cortex-like networks. Adv Mater. 2018;30(52): e1806132.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Vieira MS, Santos AK, Vasconcellos R, Goulart VAM, Parreira RC, Kihara AH, et al. Neural stem cell differentiation into mature neurons: mechanisms of regulation and biotechnological applications. Biotechnol Adv. 2018;36(7):1946–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li Y, Xiao Y, Liu C. The horizon of materiobiology: a perspective on material-guided cell behaviors and tissue engineering. Chem Rev. 2017;117(5):4376–421.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Baker BM, Chen CS. Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci. 2012;125(Pt 13):3015–24.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petrie RJ, Yamada KM. At the leading edge of three-dimensional cell migration. J Cell Sci. 2012;125(Pt 24):5917–26.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Baker BM, Trappmann B, Wang WY, Sakar MS, Kim IL, Shenoy VB, et al. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat Mater. 2015;14(12):1262–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Higuchi A, Ling QD, Chang Y, Hsu ST, Umezawa A. Physical cues of biomaterials guide stem cell differentiation fate. Chem Rev. 2013;113(5):3297–328.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee J, Abdeen AA, Kim AS, Kilian KA. Influence of biophysical parameters on maintaining the mesenchymal stem cell phenotype. ACS Biomater Sci Eng. 2015;1(4):218–26.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Roca-Cusachs P, Iskratsch T, Sheetz MP. Finding the weakest link: exploring integrin-mediated mechanical molecular pathways. J Cell Sci. 2012;125(Pt 13):3025–38.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang J, Ma X, Lin D, Shi H, Yuan Y, Tang W, et al. Magnesium modification of a calcium phosphate cement alters bone marrow stromal cell behavior via an integrin-mediated mechanism. Biomaterials. 2015;53:251–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yin S, Liu J, Kang Y, Lin Y, Li D, Shao L. Interactions of nanomaterials with ion channels and related mechanisms. Br J Pharmacol. 2019;176(19):3754–74.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kang Y, Liu J, Song B, Feng X, Ou L, Wei L, et al. Potential links between cytoskeletal disturbances and electroneurophysiological dysfunctions induced in the central nervous system by inorganic nanoparticles. Cell Physiol Biochem. 2016;40(6):1487–505.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lin CX, Yang SY, Gu JL, Meng J, Xu HY, Cao JM. The acute toxic effects of silver nanoparticles on myocardial transmembrane potential, INa and IK1 channels and heart rhythm in mice. Nanotoxicology. 2017;11(6):827–37.

    CAS 
    PubMed 

    Google Scholar
     

  • Bitounis D, Ali-Boucetta H, Hong BH, Min DH, Kostarelos K. Prospects and challenges of graphene in biomedical applications. Adv Mater. 2013;25(16):2258–68.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li N, Zhang Q, Gao S, Song Q, Huang R, Wang L, et al. Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci Rep. 2013;3:1604.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Aydin T, Gurcan C, Taheri H, Yilmazer A. Graphene based materials in neural tissue regeneration. Adv Exp Med Biol. 2018;1107:129–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guo R, Li J, Chen C, Xiao M, Liao M, Hu Y, et al. Biomimetic 3D bacterial cellulose-graphene foam hybrid scaffold regulates neural stem cell proliferation and differentiation. Colloids Surf B Biointerfaces. 2021;200: 111590.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fabbro A, Prato M, Ballerini L. Carbon nanotubes in neuroregeneration and repair. Adv Drug Deliv Rev. 2013;65(15):2034–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee SJ, Zhu W, Nowicki M, Lee G, Heo DN, Kim J, et al. 3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration. J Neural Eng. 2018;15(1): 016018.

    PubMed 
    Article 

    Google Scholar
     

  • Pampaloni NP, Lottner M, Giugliano M, Matruglio A, D’Amico F, Prato M, et al. Single-layer graphene modulates neuronal communication and augments membrane ion currents. Nat Nanotechnol. 2018;13(8):755–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rauti R, Lozano N, Leon V, Scaini D, Musto M, Rago I, et al. Graphene oxide nanosheets reshape synaptic function in cultured brain networks. ACS Nano. 2016;10(4):4459–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Barrejon M, Rauti R, Ballerini L, Prato M. Chemically cross-linked carbon nanotube films engineered to control neuronal signaling. ACS Nano. 2019;13(8):8879–89.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fabbro A, Villari A, Laishram J, Scaini D, Toma FM, Turco A, et al. Spinal cord explants use carbon nanotube interfaces to enhance neurite outgrowth and to fortify synaptic inputs. ACS Nano. 2012;6(3):2041–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mazzatenta A, Giugliano M, Campidelli S, Gambazzi L, Businaro L, Markram H, et al. Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits. J Neurosci. 2007;27(26):6931–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Driscoll N, Richardson AG, Maleski K, Anasori B, Adewole O, Lelyukh P, et al. Two-dimensional Ti3C2 MXene for high-resolution neural interfaces. ACS Nano. 2018;12(10):10419–29.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kim SW, Kim T, Kim YS, Choi HS, Lim HJ, Yang SJ, et al. Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon. 2012;50(1):3–33.

    CAS 
    Article 

    Google Scholar
     

  • Lee HP, Gaharwar AK. Light-responsive inorganic biomaterials for biomedical applications. Adv Sci (Weinh). 2020;7(17):2000863.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hantanasirisakul K, Gogotsi Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv Mater. 2018;30(52):1804779.

    Article 
    CAS 

    Google Scholar
     

  • Lin H, Wang X, Yu L, Chen Y, Shi J. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett. 2017;17(1):384–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dai C, Chen Y, Jing X, Xiang L, Yang D, Lin H, et al. Two-dimensional tantalum carbide (MXenes) composite nanosheets for multiple imaging-guided photothermal tumor ablation. ACS Nano. 2017;11(12):12696–712.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lin H, Wang Y, Gao S, Chen Y, Shi J. Theranostic 2D tantalum carbide (MXene). Adv Mater. 2018;30(4):1703284.

    Article 
    CAS 

    Google Scholar
     

  • Xuan J, Wang Z, Chen Y, Liang D, Cheng L, Yang X, et al. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew Chem Int Ed Engl. 2016;55(47):14569–74.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lin H, Gao S, Dai C, Chen Y, Shi J. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J Am Chem Soc. 2017;139(45):16235–47.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu G, Zou J, Tang Q, Yang X, Zhang Y, Zhang Q, et al. Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Appl Mater Interfaces. 2017;9(46):40077–86.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rakhi RB, Nayak P, Xia C, Alshareef HN. Novel amperometric glucose biosensor based on MXene nanocomposite. Sci Rep. 2016;6:36422.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hroncekova S, Bertok T, Hires M, Jane E, Lorencova L, Vikartovska A, et al. Ultrasensitive Ti3C2TX MXene/Chitosan nanocomposite-based amperometric biosensor for detection of potential prostate cancer marker in urine samples. Processes (Basel). 2020;8(5):580.

    CAS 
    Article 

    Google Scholar
     

  • Cho YW, Park JH, Lee KH, Lee T, Luo Z, Kim TH. Recent advances in nanomaterial-modified electrical platforms for the detection of dopamine in living cells. Nano Converg. 2020;7(1):40.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ramanavicius S, Ramanavicius A. Progress and insights in the application of MXenes as new 2D nano-materials suitable for biosensors and biofuel cell design. Int J Mol Sci. 2020;21(23).

  • Tran NM, Ta QTH, Noh J-S. rGO/Ti3C2Tx heterostructures for the efficient, room-temperature detection of multiple toxic gases. Mater Chem Phys. 2021;273.

  • Rasool K, Mahmoud KA, Johnson DJ, Helal M, Berdiyorov GR, Gogotsi Y. Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci Rep. 2017;7(1):1598.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Rasool K, Helal M, Ali A, Ren CE, Gogotsi Y, Mahmoud KA. Antibacterial activity of Ti(3)C(2)Tx MXene. ACS Nano. 2016;10(3):3674–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • My Tran N, Thanh Hoai Ta Q, Noh J-S. Unusual synthesis of safflower-shaped TiO2/Ti3C2 heterostructures initiated from two-dimensional Ti3C2 MXene. Appl Surface Sci. 2021;538.

  • My Tran N, Thanh Hoai Ta Q, Sreedhar A, Noh J-S. Ti3C2Tx MXene playing as a strong methylene blue adsorbent in wastewater. Appl Surface Sci. 2021;537.

  • Xue Q, Zhang H, Zhu M, Pei Z, Li H, Wang Z, et al. Photoluminescent Ti3 C2 MXene quantum dots for multicolor cellular imaging. Adv Mater. 2017;29(15).

  • Song M, Pang SY, Guo F, Wong MC, Hao J. Fluoride-free 2D niobium carbide MXenes as stable and biocompatible nanoplatforms for electrochemical biosensors with ultrahigh sensitivity. Adv Sci (Weinh). 2020;7(24):2001546.

    CAS 
    Article 

    Google Scholar
     

  • Huang K, Li Z, Lin J, Han G, Huang P. Correction: two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem Soc Rev. 2018;47(17):6889.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fu Q, Zhu R, Song J, Yang H, Chen X. Photoacoustic imaging: contrast agents and their biomedical applications. Adv Mater. 2018.

  • Huang K, Li Z, Lin J, Han G, Huang P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem Soc Rev. 2018;47(14):5109–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lin H, Chen Y, Shi J. Insights into 2D MXenes for versatile biomedical applications: current advances and challenges ahead. Adv Sci (Weinh). 2018;5(10):1800518.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano. 2011;5(9):6971–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Soleymaniha M, Shahbazi MA, Rafieerad AR, Maleki A, Amiri A. Promoting role of MXene nanosheets in biomedical sciences: therapeutic and biosensing innovations. Adv Healthc Mater. 2019;8(1): e1801137.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Yu X, Cai X, Cui H, Lee SW, Yu XF, Liu B. Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale. 2017;9(45):17859–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Karlsson LH, Birch J, Halim J, Barsoum MW, Persson PO. Atomically resolved structural and chemical investigation of single MXene sheets. Nano Lett. 2015;15(8):4955–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu H, Duan C, Yang C, Shen W, Wang F, Zhu Z. A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2. Sens Actuators, B Chem. 2015;218:60–6.

    CAS 
    Article 

    Google Scholar
     

  • Wu W, Ge H, Zhang L, Lei X, Yang Y, Fu Y, et al. Evaluating the cytotoxicity of Ti3C2 MXene to neural stem cells. Chem Res Toxicol. 2020;33(12):2953–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vural M, Zhu H, Pena-Francesch A, Jung H, Allen BD, Demirel MC. Self-assembly of topologically networked protein-Ti3C2Tx MXene composites. ACS Nano. 2020;14(6):6956–67.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guo R, Xiao M, Zhao W, Zhou S, Hu Y, Liao M, et al. 2D Ti3C2TxMXene couples electrical stimulation to promote proliferation and neural differentiation of neural stem cells. Acta Biomater. 2022;139:105–17.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Moody WJ, Bosma MM. Ion channel development, spontaneous activity, and activity-dependent development in nerve and muscle cells. Physiol Rev. 2005;85(3):883–941.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fields RD. Effects of ion channel activity on development of dorsal root ganglion neurons. J Neurobiol. 1998;37(1):158–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Baines RA, Pym EC. Determinants of electrical properties in developing neurons. Semin Cell Dev Biol. 2006;17(1):12–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brini M, Cali T, Ottolini D, Carafoli E. Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci. 2014;71(15):2787–814.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Arie Y, Iketani M, Takamatsu K, Mikoshiba K, Goshima Y, Takei K. Developmental changes in the regulation of calcium-dependent neurite outgrowth. Biochem Biophys Res Commun. 2009;379(1):11–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gasperini RJ, Pavez M, Thompson AC, Mitchell CB, Hardy H, Young KM, et al. How does calcium interact with the cytoskeleton to regulate growth cone motility during axon pathfinding? Mol Cell Neurosci. 2017;84:29–35.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhao QR, Lu JM, Li ZY, Mei YA. Neuritin promotes neurite and spine growth in rat cerebellar granule cells via L-type calcium channel-mediated calcium influx. J Neurochem. 2018;147(1):40–57.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li S, Tuft B, Xu L, Polacco M, Clarke JC, Guymon CA, et al. Intracellular calcium and cyclic nucleotide levels modulate neurite guidance by microtopographical substrate features. J Biomed Mater Res A. 2016;104(8):2037–48.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hegarty JL, Kay AR, Green SH. Trophic support of cultured spiral ganglion neurons by depolarization exceeds and is additive with that by neurotrophins or cAMP and requires elevation of [Ca2+]i within a set range. J Neurosci. 1997;17(6):1959–70.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Adams DJ, Hill MA. Potassium channels and membrane potential in the modulation of intracellular calcium in vascular endothelial cells. J Cardiovasc Electrophysiol. 2004;15(5):598–610.

    PubMed 
    Article 

    Google Scholar
     

  • Cerbai E, Pino R, Sartiani L, Mugelli A. Influence of postnatal-development on I(f) occurrence and properties in neonatal rat ventricular myocytes. Cardiovasc Res. 1999;42(2):416–23.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guo R, Zhang S, Xiao M, Qian F, He Z, Li D, et al. Accelerating bioelectric functional development of neural stem cells by graphene coupling: implications for neural interfacing with conductive materials. Biomaterials. 2016;106:193–204.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bahrey HL, Moody WJ. Voltage-gated currents, dye and electrical coupling in the embryonic mouse neocortex. Cereb Cortex. 2003;13(3):239–51.

    PubMed 
    Article 

    Google Scholar
     

  • Owens DF, Boyce LH, Davis MB, Kriegstein AR. Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging. J Neurosci. 1996;16(20):6414–23.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xiao M, Ulloa Severino FP, Iseppon F, Cheng G, Torre V, Tang M. 3D free-standing ordered graphene network geometrically regulates neuronal growth and network formation. Nano Lett. 2020;20(10):7043–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ulloa Severino FP, Ban J, Song Q, Tang M, Bianconi G, Cheng G, et al. The role of dimensionality in neuronal network dynamics. Sci Rep. 2016;6:29640.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tang M, Song Q, Li N, Jiang Z, Huang R, Cheng G. Enhancement of electrical signaling in neural networks on graphene films. Biomaterials. 2013;34(27):6402–11.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li N, Zhang X, Song Q, Su R, Zhang Q, Kong T, et al. The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphene substrates. Biomaterials. 2011;32(35):9374–82.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published.