Tailoring solid-state single-photon sources with stimulated emissions

[ad_1]

  • W.F. Drake, G. Atomic, Molecular and Optical Physics (Springer, 2006).

  • M., Fox. Quantum Optics: An Introduction Vol. 15 (Oxford Univ. Press, 2006).

  • Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    CAS 

    Google Scholar
     

  • Uppu, R., Midolo, L., Zhou, X., Carolan, J. & Lodahl, P. Quantum-dot-based deterministic photon–emitter interfaces for scalable photonic quantum technology. Nat. Nanotechnol. 16, 1308–1317 (2021).

    CAS 

    Google Scholar
     

  • Schulte, C. H. H. et al. Quadrature squeezed photons from a two-level system. Nature 525, 222–225 (2015).

    CAS 

    Google Scholar
     

  • He, Y. et al. Dynamically controlled resonance fluorescence spectra from a doubly dressed single InGaAs quantum dot. Phys. Rev. Lett. 114, 097402 (2015).

    CAS 

    Google Scholar
     

  • Chou, C. W., Polyakov, S. V., Kuzmich, A. & Kimble, H. J. Single-photon generation from stored excitation in an atomic ensemble. Phys. Rev. Lett. 92, 213601 (2004).

    CAS 

    Google Scholar
     

  • Almendros, M. et al. Bandwidth-tunable single-photon source in an ion-trap quantum network. Phys. Rev. Lett. 103, 213601 (2009).

    CAS 

    Google Scholar
     

  • Pursley, B. C., Carter, S. G., Yakes, M. K., Bracker, A. S. & Gammon, D. Picosecond pulse shaping of single photons using quantum dots. Nat. Commun. 9, 115 (2018).

    CAS 

    Google Scholar
     

  • Pillet, P., Valentin, C., Yuan, R.-L. & Yu, J. Adiabatic population transfer in a multilevel system. Phys. Rev. A 48, 845–848 (1993).

    CAS 

    Google Scholar
     

  • Kuhn, A., Hennrich, M. & Rempe, G. Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett. 89, 067901 (2002).


    Google Scholar
     

  • Xu, X. et al. Coherent population trapping of an electron spin in a single negatively charged quantum dot. Nat. Phys. 4, 692–695 (2008).

    CAS 

    Google Scholar
     

  • Moreau, E. et al. Quantum cascade of photons in semiconductor quantum dots. Phys. Rev. Lett. 87, 183601 (2001).


    Google Scholar
     

  • Hu, Y. Z. et al. Biexcitons in semiconductor quantum dots. Phys. Rev. Lett. 64, 1805–1807 (1990).

    CAS 

    Google Scholar
     

  • Li, X. et al. An all-optical quantum gate in a semiconductor quantum dot. Science 301, 809–811 (2003).

    CAS 

    Google Scholar
     

  • Hwang, J. et al. A single-molecule optical transistor. Nature 460, 76–80 (2009).

    CAS 

    Google Scholar
     

  • Spinnler, C. et al. Optically driving the radiative Auger transition. Nat. Commun. 12, 6575 (2021).

    CAS 

    Google Scholar
     

  • Liu, F. Ultrafast depopulation of a quantum dot by LA-phonon-assisted stimulated emission. Phys. Rev. B 93, 161407 (2016).


    Google Scholar
     

  • Piatkowski, L. et al. Ultrafast stimulated emission microscopy of single nanocrystals. Science 366, 1240–1243 (2019).

    CAS 

    Google Scholar
     

  • Kianinia, M. et al. All-optical control and super-resolution imaging of quantum emitters in layered materials. Nat. Commun. 9, 874 (2018).


    Google Scholar
     

  • Kaldewey, T. et al. Far-field nanoscopy on a semiconductor quantum dot via a rapid-adiabatic-passage-based switch. Nat. Photon. 12, 68–72 (2018).

    CAS 

    Google Scholar
     

  • Liu, S. et al. Dual-resonance enhanced quantum light-matter interactions in deterministically coupled quantum-dot-micropillars. Light Sci. Appl. 10, 158 (2021).


    Google Scholar
     

  • Müller, M., Bounouar, S., Jöns, K. D., Glässl, M. & Michler, P. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photon. 8, 224–228 (2014).


    Google Scholar
     

  • Wang, H. et al. Towards optimal single-photon sources from polarized microcavities. Nat. Photon. 13, 770–775 (2019).

    CAS 

    Google Scholar
     

  • Huber, T. et al. Filter-free single-photon quantum dot resonance fluorescence in an integrated cavity-waveguide device. Optica 7, 380–385 (2020).


    Google Scholar
     

  • Schweickert, L. et al. On-demand generation of background-free single photons from a solid-state source. Appl. Phys. Lett. 112, 093106 (2018).


    Google Scholar
     

  • Schöll, E. et al. Crux of using the cascaded emission of a three-level quantum ladder system to generate indistinguishable photons. Phys. Rev. Lett. 125, 233605 (2020).


    Google Scholar
     

  • Brod, D. J. et al. Photonic implementation of boson sampling: a review. Adv. Photon. 1, 034001 (2019).

    CAS 

    Google Scholar
     

  • Giovannetti, V., Lloyd, S. & Maccone, L. Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006).


    Google Scholar
     

  • Luo, Q. et al. Quantum random number generator based on single-photon emitter in gallium nitride. Opt. Lett. 45, 4224–4227 (2020).


    Google Scholar
     

  • Boto, A. N. et al. Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85, 2733–2736 (2000).

    CAS 

    Google Scholar
     

  • Kaer, P., Gregersen, N. & Mork, J. The role of phonon scattering in the indistinguishability of photons emitted from semiconductor cavity qed systems. N. J. Phys. 15, 035027 (2013).

    CAS 

    Google Scholar
     

  • Unsleber, S. et al. Two-photon interference from a quantum dot microcavity: persistent pure dephasing and suppression of time jitter. Phys. Rev. B 91, 075413 (2015).


    Google Scholar
     

  • Thomas, S. E. et al. Bright polarized single-photon source based on a linear dipole. Phys. Rev. Lett. 126, 233601 (2021).

    CAS 

    Google Scholar
     

  • Wang, H. et al. Near-transform-limited single photons from an efficient solid-state quantum emitter. Phys. Rev. Lett. 116, 213601 (2016).


    Google Scholar
     

  • Zhai, L. et al. Low-noise GaAs quantum dots for quantum photonics. Nat. Commun. 11, 4745 (2020).

    CAS 

    Google Scholar
     

  • Tomm, N. et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).

    CAS 

    Google Scholar
     

  • Santori, C., Pelton, M., Solomon, G., Dale, Y. & Yamamoto, Y. Triggered single photons from a quantum dot. Phys. Rev. Lett. 86, 1502–1505 (2001).

    CAS 

    Google Scholar
     

  • Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).


    Google Scholar
     

  • Schimpf, C., Manna, S., Da Silva, S. F. C., Aigner, M. & Rastelli, A. Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 K. Adv. Photon. 3, 065001 (2021).


    Google Scholar
     

  • Uppu, R. et al. Scalable integrated single-photon source. Sci. Adv. 6, eabc8268 (2020).


    Google Scholar
     

  • He, Y.-M. et al. Coherently driving a single quantum two-level system with dichromatic laser pulses. Nat. Phys. 15, 941–946 (2019).

    CAS 

    Google Scholar
     

  • Koong, Z. X. et al. Coherent dynamics in quantum emitters under dichromatic excitation. Phys. Rev. Lett. 126, 047403 (2021).

    CAS 

    Google Scholar
     

  • Reindl, M. et al. Phonon-assisted two-photon interference from remote quantum emitters. Nano Lett. 17, 4090–4095 (2017).

    CAS 

    Google Scholar
     

  • Claudon, J. et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photon. 4, 174–177 (2010).

    CAS 

    Google Scholar
     

  • Gschrey, M. et al. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography. Nat. Commun. 6, 7662 (2015).

    CAS 

    Google Scholar
     

  • Marty, G., Combrié, S., Raineri, F. & De Rossi, A. Photonic crystal optical parametric oscillator. Nat. Photon. 15, 53–58 (2021).

    CAS 

    Google Scholar
     

  • Naghiloo, M., Abbasi, M., Joglekar, Y. N. & Murch, K. W. Quantum state tomography across the exceptional point in a single dissipative qubit. Nat. Phys. 15, 1232–1236 (2019).

    CAS 

    Google Scholar
     

  • Nguyen, H. A. et al. Giant nonlinear interaction between two optical beams via a quantum dot embedded in a photonic wire. Phys. Rev. B 97, 201106 (2018).

    CAS 

    Google Scholar
     

  • Park, Y.-S., Roh, J., Diroll, B. T., Schaller, R. D. & Klimov, V. I. Colloidal quantum dot lasers. Nat. Rev. Mater. 6, 382–401 (2021).

    CAS 

    Google Scholar
     

  • Sbresny, F. et al. Stimulated generation of indistinguishable single photons from a quantum ladder system. Phys. Rev. Lett. 128, 093603 (2022).

  • Yan, J. et al. Double-pulse generation of indistinguishable single photons with optically controlled polarization. Nano Lett. 22, 1483–1490 (2022).

    CAS 

    Google Scholar
     

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published.