Pumping between phases with a pulsed-fuel molecular ratchet

[ad_1]

  • Yang, Y.-W., Sun, Y.-L. & Song, N. Switchable host–guest systems on surfaces. Acc. Chem. Res. 47, 1950–1960 (2014).

    CAS 

    Google Scholar
     

  • Kolesnichenko, I. V. & Anslyn, E. V. Practical applications of supramolecular chemistry. Chem. Soc. Rev. 46, 2385–2390 (2017).

    CAS 

    Google Scholar
     

  • Nguyen, T. D. et al. A reversible molecular valve. Proc. Natl Acad. Sci. USA 102, 10029–10034 (2005).

    CAS 

    Google Scholar
     

  • Yang, Y.-W. Towards biocompatible nanovalves based on mesoporous silica nanoparticles. Med. Chem. Commun. 2, 1033–1049 (2011).

    CAS 

    Google Scholar
     

  • Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    CAS 

    Google Scholar
     

  • Zhang, L., Marcos, V. & Leigh, D. A. Molecular machines with bio-inspired mechanisms. Proc. Natl Acad. Sci. USA 115, 9397–9404 (2018).

    CAS 

    Google Scholar
     

  • Astumian, R. D. et al. Non-equilibrium kinetics and trajectory thermodynamics of synthetic molecular pumps. Mater. Chem. Front. 4, 1304–1314 (2020).

    CAS 

    Google Scholar
     

  • Astumian, R. D. Irrelevance of the power stroke for the directionality, stopping force, and optimal efficiency of chemically driven molecular machines. Biophys. J. 108, 291–303 (2015).

    CAS 

    Google Scholar
     

  • Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    CAS 

    Google Scholar
     

  • Astumian, R. D., Mukherjee, S. & Warshel, A. The physics and physical chemistry of molecular machines. ChemPhysChem 17, 1719–1741 (2016).

    CAS 

    Google Scholar
     

  • Amano, S., Fielden, S. D. P. & Leigh, D. A. A catalysis-driven artificial molecular pump. Nature 594, 529–534 (2021).

    CAS 

    Google Scholar
     

  • Borsley, S., Leigh, D. A. & Roberts, B. M. W. A doubly kinetically-gated information ratchet autonomously driven by carbodiimide hydration. J. Am. Chem. Soc. 143, 4414–4420 (2021).

    CAS 

    Google Scholar
     

  • Boekhoven, J., Hendriksen, W. E., Koper, G. J. M., Eelkema, R. & van Esch, J. H. Transient assembly of active materials fueled by a chemical reaction. Science 349, 1075–1079 (2015).

    CAS 

    Google Scholar
     

  • De, S. & Klajn, R. Dissipative self-assembly driven by the consumption of chemical fuels. Adv. Mater. 30, 1706750 (2018).


    Google Scholar
     

  • van Rossum, S. A. P., Tena-Solsona, M., van Esch, J. H., Eelkema, R. & Boekhoven, J. Dissipative out-of-equilibrium assembly of man-made supramolecular materials. Chem. Soc. Rev. 46, 5519–5535 (2017).


    Google Scholar
     

  • Ragazzon, G. & Prins, L. J. Energy consumption in chemical fuel-driven self-assembly. Nat. Nanotechnol. 13, 882–889 (2018).

    CAS 

    Google Scholar
     

  • Serreli, V., Lee, C.-F., Kay, E. R. & Leigh, D. A. A molecular information ratchet. Nature 445, 523–527 (2007).

    CAS 

    Google Scholar
     

  • Cheng, C. et al. An artificial molecular pump. Nat. Nanotechnol. 10, 547–553 (2015).

    CAS 

    Google Scholar
     

  • Erbas-Cakmak, S. et al. Rotary and linear molecular motors driven by pulses of a chemical fuel. Science 358, 340–343 (2017).

    CAS 

    Google Scholar
     

  • Pezzato, C. et al. Controlling dual molecular pumps electrochemically. Angew. Chem. Int. Ed. 57, 9325–9329 (2018).

    CAS 

    Google Scholar
     

  • Qiu, Y. et al. A precise polyrotaxane synthesizer. Science 368, 1247–1253 (2020).

    CAS 

    Google Scholar
     

  • Qiu, Y., Feng, Y., Guo, Q.-H., Astumian, R. D. & Stoddart, J. F. Pumps through the ages. Chem 6, 1952–1977 (2020).

    CAS 

    Google Scholar
     

  • Balzani, V., Credi, A. & Venturi, M. Molecular machines working on surfaces and at interfaces. ChemPhysChem 9, 202–220 (2008).

    CAS 

    Google Scholar
     

  • Davis, J. J., Orlowski, G. A., Rahman, H. & Beer, P. D. Mechanically interlocked and switchable molecules at surfaces. Chem. Commun. 46, 54–63 (2010).

    CAS 

    Google Scholar
     

  • Zhang, Q. & Qu, D.-H. Artificial molecular machine immobilized surfaces: a new platform to construct functional materials. ChemPhysChem 17, 1759–1768 (2016).

    CAS 

    Google Scholar
     

  • Astumian, R. D. & Derényi, I. Fluctuation driven transport and models of molecular motors and pumps. Eur. Biophys. J. 27, 474–489 (1998).

    CAS 

    Google Scholar
     

  • Hernández, J. V., Kay, E. R. & Leigh, D. A. A reversible synthetic rotary molecular motor. Science 306, 1532–1537 (2004).


    Google Scholar
     

  • Chatterjee, M. N., Kay, E. R. & Leigh, D. A. Beyond switches: ratcheting a particle energetically uphill with a compartmentalized molecular machine. J. Am. Chem. Soc. 128, 4058–4073 (2006).

    CAS 

    Google Scholar
     

  • Barrell, M. J., Campaña, A. G., von Delius, M., Geertsema, E. M. & Leigh, D. A. Light-driven transport of a molecular walker in either direction along a molecular track. Angew. Chem. Int. Ed. 50, 285–290 (2011).

    CAS 

    Google Scholar
     

  • Kassem, S., Lee, A. T. L., Leigh, D. A., Markevicius, A. & Solà, J. Pick-up, transport and release of a molecular cargo using a small-molecule robotic arm. Nat. Chem. 8, 138–143 (2016).

    CAS 

    Google Scholar
     

  • Biagini, C. et al. Dissipative catalysis with a molecular machine. Angew. Chem. Int. Ed. 58, 9876–9880 (2019).

    CAS 

    Google Scholar
     

  • Olivieri, E., Quintard, G., Naubron, J.-V. & Quintard, A. Chemically fueled three-state chiroptical switching supramolecular gel with temporal control. J. Am. Chem. Soc. 143, 12650–12657 (2021).

    CAS 

    Google Scholar
     

  • Abe, Y. et al. Thermoresponsive shuttling of rotaxane containing trichloroacetate ion. Org. Lett. 14, 4122–4125 (2012).

    CAS 

    Google Scholar
     

  • Berrocal, J. A., Biagini, C., Mandolini, L. & Di Stefano, S. Coupling of the decarboxylation of 2-cyano-2-phenylpropanoic acid to large-amplitude motions: a convenient fuel for an acid-base-operated molecular switch. Angew. Chem. Int. Ed. 55, 6997–7001 (2016).

    CAS 

    Google Scholar
     

  • Ghosh, A., Paul, I., Adlung, M., Wickleder, C. & Schmittel, M. Oscillating emission of [2]rotaxane driven by chemical fuel. Org. Lett. 20, 1046–1049 (2018).

    CAS 

    Google Scholar
     

  • Shiab, Q. & Chen, C.-F. Step-by-step reaction-powered mechanical motion triggered by a chemical fuel pulse. Chem. Sci. 10, 2529–2533 (2019).


    Google Scholar
     

  • Biagini, C. & Di Stefano, S. Abiotic chemical fuels for the operation of molecular machines. Angew. Chem. Int. Ed. 59, 8344–8354 (2020).

    CAS 

    Google Scholar
     

  • Asthana, D. et al. Decorating beads with paramagnetic rings: synthesis of inorganic-organic [1014]rotaxanes as shown by spin counting. Preprint at https://chemrxiv.org/engage/chemrxiv/article-details/62019a0ba6fb4d98af4e3aea (2022).

  • Fuller, A.-M. L., Leigh, D. A. & Lusby, P. J. Sequence isomerism in [3]rotaxanes. J. Am. Chem. Soc. 132, 4954–4959 (2010).

    CAS 

    Google Scholar
     

  • van Esch, J. H., Klajn, R. & Otto, S. Chemical systems out of equilibrium. Chem. Soc. Rev. 46, 5474–5475 (2017).


    Google Scholar
     

  • Berná, J. et al. Macroscopic transport by synthetic molecular machines. Nat. Mater. 4, 704–710 (2005).


    Google Scholar
     

  • Zhu, K. L., O’Keefe, C. A., Vukotic, V. N., Schurko, R. W. & Loeb, S. J. A molecular shuttle that operates inside a metal–organic framework. Nat. Chem. 7, 514–519 (2015).

    CAS 

    Google Scholar
     

  • Martinez-Bulit, P., Stirk, A. J. & Loeb, S. J. Rotors, motors, and machines inside metal–organic frameworks. Trends Chem. 1, 588–600 (2019).

    CAS 

    Google Scholar
     

  • Danowski, W. et al. Unidirectional rotary motion in a metal–organic framework. Nat. Nanotechnol. 14, 488–494 (2019).

    CAS 

    Google Scholar
     

  • Krause, S. & Feringa, B. L. Towards artificial molecular factories from framework-embedded molecular machines. Nat. Rev. Chem. 4, 550–562 (2020).

    CAS 

    Google Scholar
     

  • Wilson, M. R. et al. An autonomous chemically fuelled small-molecule motor. Nature 534, 235–240 (2016).

    CAS 

    Google Scholar
     

  • Coutrot, F. A focus on triazolium as a multipurpose molecular station for pH-sensitive interlocked crown-ether-based molecular machines. ChemistryOpen 4, 556–576 (2015).

    CAS 

    Google Scholar
     

  • Liang, L. & Astruc, D. The copper(I)-catalyzed alkyne–azide cycloaddition (CuAAC) ‘click’ reaction and its applications. An overview. Coord. Chem. Rev. 255, 2933–2945 (2011).

    CAS 

    Google Scholar
     

  • Walsh, C. T., Tu, B. P. & Tang, Y. Eight kinetically stable but thermodynamically activated molecules that power cell metabolism. Chem. Rev. 118, 1460–1494 (2018).

    CAS 

    Google Scholar
     

  • Amano, S., Borsley, S., Leigh, D. A. & Sun, Z. Chemical engines: driving systems away from equilibrium through catalyst reaction cycles. Nat. Nanotechnol. 16, 1057–1067 (2021).

    CAS 

    Google Scholar
     

  • Ardagh, M. A., Birol, T., Zhang, Q., Abdelrahman, O. A. & Dauenhauer, P. J. Catalytic resonance theory: superVolcanoes, catalytic molecular pumps, and oscillatory steady state. Catal. Sci. Technol. 9, 5058–5076 (2019).

    CAS 

    Google Scholar
     

  • Feng, L. et al. Active mechanisorption driven by pumping cassettes. Science 374, 1215–1221 (2021).

    CAS 

    Google Scholar
     

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published.