Phase-change memtransistive synapses for mixed-plasticity neural computations

[ad_1]

  • Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015).

    CAS 

    Google Scholar
     

  • Bliss, T. V. P. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    CAS 

    Google Scholar
     

  • Nessler, B., Pfeiffer, M., Buesing, L. & Maass, W. Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity. PLOS Comput. Biol. 9, e1003037 (2013).

    CAS 

    Google Scholar
     

  • Scellier, B. & Bengio, Y. Equilibrium propagation: bridging the gap between energy-based models and backpropagation. Front. Comput. Neurosci. 11, 24 (2017).


    Google Scholar
     

  • Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008).


    Google Scholar
     

  • Grande, L. A. & Spain, W. J. Synaptic depression as a timing device. Physiology 20, 201–210 (2005).


    Google Scholar
     

  • Szatmáry, B. & Izhikevich, E. M. Spike-timing theory of working memory. PLoS Comput. Biol. 6, e1000879 (2010).


    Google Scholar
     

  • Fiebig, F. & Lansner, A. A spiking working memory model based on hebbian short-term potentiation. J. Neurosci. 37, 83–96 (2017).

    CAS 

    Google Scholar
     

  • Brenowitz, S. D. & Regehr, W. G. Associative short-term synaptic plasticity mediated by endocannabinoids. Neuron 45, 419–431 (2005).

    CAS 

    Google Scholar
     

  • Cassenaer, S. & Laurent, G. Hebbian stdp in mushroom bodies facilitates the synchronous flow of olfactory information in locusts. Nature 448, 709–713 (2007).

    CAS 

    Google Scholar
     

  • Erickson, M. A., Maramara, L. A. & Lisman, J. A single brief burst induces glur1-dependent associative short-term potentiation: a potential mechanism for short-term memory. J. Cogn. Neurosci. 22, 2530–2540 (2010).


    Google Scholar
     

  • Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments. Preprint at https://arxiv.org/abs/2009.06808 (2020).

  • Buonomano, D. & Carvalho, T. A novel learning rule for long-term plasticity of short-term synaptic plasticity enhances temporal processing. Front. Integr. Neurosci. 5, 20 (2011).


    Google Scholar
     

  • Regehr, W. G. Short-term presynaptic plasticity. Cold Spring Harb. Perspect. Biol. 4, a005702 (2012).

  • Ohno, T. et al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10, 591–595 (2011).

    CAS 

    Google Scholar
     

  • Moraitis, T., Sebastian, A. & Eleftheriou, E. The role of short-term plasticity in neuromorphic learning: Learning from the timing of rate-varying events with fatiguing spike-timing-dependent plasticity. IEEE Nanotechnol. Mag. 12, 45–53 (2018).


    Google Scholar
     

  • Royer, S. & Paré, D. Conservation of total synaptic weight through balanced synaptic depression and potentiation. Nature 422, 518–522 (2003).

    CAS 

    Google Scholar
     

  • Gkoupidenis, P., Koutsouras, D. A. & Malliaras, G. G. Neuromorphic device architectures with global connectivity through electrolyte gating. Nat. Commun. 8, 15448 (2017).

    CAS 

    Google Scholar
     

  • Wang, Z., Joshi, S. & Savel, ea Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2016).


    Google Scholar
     

  • Xia, Q. & Yang, J. J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 18, 309–323 (2019).

    CAS 

    Google Scholar
     

  • Sangwan, V. K. et al. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554, 500–504 (2018).

    CAS 

    Google Scholar
     

  • Lee, H.-S. et al. Dual-gated MoS2 memtransistor crossbar array. Adv. Funct. Mater. 30, 2003683 (2020).

    CAS 

    Google Scholar
     

  • Sarwat, S. G. Materials science and engineering of phase change random access memory. Mater. Sci. Technol. 33, 16 (2017).


    Google Scholar
     

  • Sebastian, A. et al. Tutorial: brain-inspired computing using phase-change memory devices. J. Appl. Phys. 124, 111101 (2018).


    Google Scholar
     

  • Liao, F. et al. Characterization of Ge2Sb2Te5 thin film transistor and its application in non-volatile memory. Microelectron. J. 37, 841–844 (2006).


    Google Scholar
     

  • Daus, A., Han, S., Knobelspies, S., Cantarella, G. & Tröster, G. Ge2Sb2Te5 p-type thin-film transistors on flexible plastic foil. Materials 11, 1672 (2018).


    Google Scholar
     

  • Wahid, S. et al. Lateral transport and field-effect characteristics of sputtered p-type chalcogenide thin films. Preprint at https://arxiv.org/abs/2107.08301 (2021).

  • Gerstner, W., Lehmann, M., Liakoni, V., Corneil, D. & Brea, J. Eligibility traces and plasticity on behavioral time scales: experimental support of neohebbian three-factor learning rules. Front. Neural Circuits 12, 53 (2018).


    Google Scholar
     

  • Neftci, E. O., Pedroni, B. U., Joshi, S., Al-Shedivat, M. & Cauwenberghs, G. Stochastic synapses enable efficient brain-inspired learning machines. Front. Neurosci. 10, 241 (2016).


    Google Scholar
     

  • Tuma, T., Pantazi, A., Le Gallo, M., Sebastian, A. & Eleftheriou, E. Stochastic phase-change neurons. Nat. Nanotechnol. 11, 693–699 (2016).

    CAS 

    Google Scholar
     

  • Cook, D. L., Schwindt, P. C., Grande, L. A. & Spain, W. J. Synaptic depression in the localization of sound. Nature 421, 66–70 (2003).

    CAS 

    Google Scholar
     

  • Maass, W., Natschläger, T. & Markram, H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14, 2531–2560 (2002).


    Google Scholar
     

  • Bi, G.-Q. & Poo, M.-M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998).

    CAS 

    Google Scholar
     

  • Van Rossum, M. C., Bi, G. Q. & Turrigiano, G. G. Stable hebbian learning from spike timing-dependent plasticity. J. Neurosci. 20, 8812–8821 (2000).


    Google Scholar
     

  • Bamford, S. A., Murray, A. F. & Willshaw, D. J. Spike-timing-dependent plasticity with weight dependence evoked from physical constraints. IEEE Trans. Biomed. Circuits Syst. 6, 385–398 (2012).


    Google Scholar
     

  • Bofill-i Petit, A. & Murray, A. F. Synchrony detection and amplification by silicon neurons with stdp synapses. IEEE Trans. Neural Netw. 15, 1296–1304 (2004).


    Google Scholar
     

  • Fernandes, D. & Carvalho, A. L. Mechanisms of homeostatic plasticity in the excitatory synapse. J. Neurochemistry 139, 973–996 (2016).

    CAS 

    Google Scholar
     

  • Watt, A. J. & Desai, S. N. Homeostatic plasticity and STDP: keeping a neuron’s cool in a fluctuating world. Front. Synaptic Neurosci. 2, 5 (2010).


    Google Scholar
     

  • Bains, A. S. & Schweighofer, N. Time-sensitive reorganization of the somatosensory cortex poststroke depends on interaction between Hebbian and homeoplasticity: a simulation study. J. Neurophysiol. 112, 3240–3250 (2014).


    Google Scholar
     

  • Ruiz-Vanoye, J. A. et al. in Computational Intelligence and Modern Heuristics (IntechOpen, 2010).

  • Korte, B. H., Vygen, J., Korte, B. & Vygen, J. Combinatorial Optimization Vol. 1 (Springer, 2011).

  • Potvin, J.-Y. & Smith, K. A. in Handbook of Metaheuristics (eds. Glover, F. & Kochenberger, G. A.) 429–455 (Kluwer Academic Publishers, 2003).

  • Wu, L.-Y., Zhang, X.-S. & Zhang, J.-L. Application of discrete hopfield-type neural network for max-cut problem. In Proceedings of ICONIP 1439–1444 (2001).

  • Park, K., Kim, J. & Lee, J. Visual field prediction using recurrent neural network. Sci. Rep. 9, 8385 (2019).


    Google Scholar
     

  • Dietterich, T. G. Machine learning for sequential data: a review. In Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), 15–30 (Springer, Berlin, Heidelberg, 2002).

  • Cai, F. et al. Power-efficient combinatorial optimization using intrinsic noise in memristor hopfield neural networks. Nat. Electron. 3, 409–418 (2020).


    Google Scholar
     

  • Yang, K. et al. Transiently chaotic simulated annealing based on intrinsic nonlinearity of memristors for efficient solution of optimization problems. Sci. Adv. 6, eaba9901 (2020).

    CAS 

    Google Scholar
     

  • Kumar, S., Strachan, J. P. & Williams, R. S. Chaotic dynamics in nanoscale NbO2 mott memristors for analogue computing. Nature 548, 318–321 (2017).

    CAS 

    Google Scholar
     

  • Zhang, Z. et al. Truly concomitant and independently expressed short-and long-term plasticity in a Bi2O2Se-based three-terminal memristor. Adv. Mater. 31, 1805769 (2019).


    Google Scholar
     

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published.