Nano-enabled pesticides for sustainable agriculture and global food security

[ad_1]

  • The State of Food Security and Nutrition in the World 2019. Safeguarding Against Economic Slowdowns and Downturns FAO licence CC BY-NC-SA 30 IGO (FAO, IFAD, UNICEF, WFP, WHO, 2019); https://www.fao.org/3/ca5162en/ca5162en.pdf

  • AQUASTAT Water Withdrawal (FAO, 2012); https://www.fao.org/nr/water/aquastat/data/query/indexhtml;jsessionid=9864E9701FABBC78FACA05B8077DB437

  • International Energy Outlook 2020 (EIA, 2020).

  • Pretty, J. Intensification for redesigned and sustainable agricultural systems. Science 362, eaav0294 (2018).


    Google Scholar
     

  • Zhang, W. Global pesticide use: profile, trend, cost/benefit and more. Proc. Int. Acad. Ecol. Environ. Sci. 8, 1–27 (2018).


    Google Scholar
     

  • New Standards to Curb the Global Spread of Plant Pests and Diseases (FAO, 2019); https://www.fao.org/news/story/en/item/1187738/icode

  • Wheeler, T. & von Braun, J. Climate change impacts on global food security. Science 341, 508–513 (2013).

    CAS 

    Google Scholar
     

  • Lowry, G. V., Avellan, A. & Gilbertson, L. M. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol. 14, 517–522 (2019).

    CAS 

    Google Scholar
     

  • Hofmann, T. et al. Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nat. Food 1, 416–425 (2020).

    CAS 

    Google Scholar
     

  • Kah, M., Kookana, R. S., Gogos, A. & Bucheli, T. D. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 13, 677–684 (2018).

    CAS 

    Google Scholar
     

  • Gilbertson, L. M. et al. Guiding the design space for nanotechnology to advance sustainable crop production. Nat. Nanotechnol. 15, 801–810 (2020).

    CAS 

    Google Scholar
     

  • de Vries, F. T., Griffiths, R. I., Knight, C. G., Nicolitch, O. & Williams, A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368, 270–274 (2020).

    CAS 

    Google Scholar
     

  • Kah, M. et al. Comprehensive framework for human health risk assessment of nanopesticides. Nat. Nanotechnol. 16, 955–964 (2021).

    CAS 

    Google Scholar
     

  • Zhao, X. et al. Development strategies and prospects of nano-based smart pesticide formulation. J. Agric. Food Chem. 66, 6504–6512 (2018).

    CAS 

    Google Scholar
     

  • Albalghiti, E., Stabryla, L. M., Gilbertson, L. & Zimmerman, J. Towards resolution of antibacterial mechanisms in metal and metal oxide nanomaterials: a meta-analysis of the influence of study design on mechanistic conclusions. Environ. Sci. Nano 8, 37–66 (2020).


    Google Scholar
     

  • Ma, C. et al. Advanced material modulation of nutritional and phytohormone status alleviates damage from soybean sudden death syndrome. Nat. Nanotechnol. 15, 1033–1042 (2020).

    CAS 

    Google Scholar
     

  • Mohanraj, V. J. & Chen, Y. Nanoparticles – a review. Trop. J. Pharm. Res. 5, 561–573 (2006).


    Google Scholar
     

  • Pasquoto-Stigliani, T. et al. Nanocapsules containing neem (Azadirachta indica) oil: development, characterization, and toxicity evaluation. Sci. Rep. 7, 5929 (2017).


    Google Scholar
     

  • Pascoli, M., de Lima, R. & Fraceto, L. F. Zein nanoparticles and strategies to improve colloidal stability: a mini-review. Front. Chem. 6, 1–5 (2018).


    Google Scholar
     

  • Hardy, A. et al. Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: part 1, human and animal health. EFSA J. 16, 5327 (2018).


    Google Scholar
     

  • Lao, S. B., Zhang, Z. X., Xu, H. H. & Jiang, G. B. Novel amphiphilic chitosan derivatives: synthesis, characterization and micellar solubilization of rotenone. Carbohydr. Polym. 82, 1136–1142 (2010).

    CAS 

    Google Scholar
     

  • Wang, A. et al. Fabrication, characterization, and biological activity of avermectin nano-delivery systems with different particle sizes. Nanoscale Res. Lett. 13, 2 (2018).


    Google Scholar
     

  • Wang, Z., Yue, L., Dhankher, O. P. & Xing, B. Nano-enabled improvements of growth and nutritional quality in food plants driven by rhizosphere processes. Environ. Int. 142, 105831 (2020).

    CAS 

    Google Scholar
     

  • Sun, L., Wang, Y., Wang, R., Zhang, P., Ju, Q. & Xu, J. Physiological, transcriptomic and metabolomic analyses reveal zinc oxide nanoparticles modulate plant growth in tomato. Environ. Sci. Nano 7, 3587–3604 (2020).

    CAS 

    Google Scholar
     

  • Gomez, A. et al. Effects of nano-enabled agricultural strategies on food quality: current knowledge and future research needs. J. Hazard. Mater. 401, 123385 (2020).


    Google Scholar
     

  • Shang, H. et al. Copper oxide nanoparticle-embedded hydrogels enhance nutrient supply and growth of lettuce (Lactuca sativa) infected with Fusarium oxysporum f. sp. lactucae. Environ. Sci. Technol. 55, 13432–13442 (2021).

    CAS 

    Google Scholar
     

  • Elmer, W. H. et al. Foliar application of copper oxide nanoparticles suppresses Fusarium wilt development on chrysanthemum. Environ. Sci. Technol. 55, 10805–10810 (2021).

    CAS 

    Google Scholar
     

  • Ma, C. et al. Role of nanoscale hydroxyapatite in disease suppression of Fusarium-infected tomato. Environ. Sci. Technol. 55, 13465–13476 (2021).

    CAS 

    Google Scholar
     

  • Rawat, S. et al. Soil-weathered CuO nanoparticles compromise foliar health and pigment production in spinach (Spinacia oleracea). Environ. Sci. Technol. 55, 13504–13512 (2021).

    CAS 

    Google Scholar
     

  • Kang, H. et al. Silica nanoparticle dissolution rate controls the suppression of Fusarium wilt of watermelon (Citrullus lanatus). Environ. Sci. Technol. 55, 13513–13522 (2021).

    CAS 

    Google Scholar
     

  • McKee, M. S. & Filser, J. Impacts of metal-based engineered nanomaterials on soil communities. Environ. Sci. Nano 3, 506–533 (2016).

    CAS 

    Google Scholar
     

  • Sillen, W. M. A. et al. Nanoparticle treatment of maize analyzed through the metatranscriptome: compromised nitrogen cycling, possible phytopathogen selection, and plant hormesis. Microbiome 8, 127 (2020).

    CAS 

    Google Scholar
     

  • Shen, Y. et al. Copper nanomaterial morphology and composition control foliar transfer through the cuticle and mediate resistance to root fungal disease in tomato (Solanum lycopersicum). J. Agric. Food Chem. 68, 11327–11338 (2020).

    CAS 

    Google Scholar
     

  • Elmer, W. H. & White, J. C. The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ. Sci. Nano 3, 1072–1079 (2016).

    CAS 

    Google Scholar
     

  • Buchman, J. T. et al. Chitosan-coated mesoporous silica nanoparticle treatment of Citrullus lanatus (watermelon): enhanced fungal disease suppression and modulated expression of stress-related genes. ACS Sustain. Chem. Eng. 7, 19649–19659 (2019).

    CAS 

    Google Scholar
     

  • Nadiminti, P. P. et al. Nanostructured liquid crystalline particle assisted delivery of 2,4-dichlorophenoxyacetic acid to weeds, crops and model plants. Crop Prot. 82, 17–29 (2016).

    CAS 

    Google Scholar
     

  • Gao, Y. et al. Fabrication of a hollow mesoporous silica hybrid to improve the targeting of a pesticide. Chem. Eng. J. 364, 361–369 (2019).

    CAS 

    Google Scholar
     

  • Wang, C. et al. Dinotefuran nano-pesticide with enhanced valid duration and controlled release property based on layered double hydroxide nano-carrier. Environ. Sci. Nano 8, 3202–3210 (2021).

    CAS 

    Google Scholar
     

  • Kah, M., Tufenkji, N. & White, J. C. Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. 14, 532–540 (2019).

    CAS 

    Google Scholar
     

  • Bailey-Serres, J., Parker, J. E., Ainsworth, E. A., Oldroyd, G. E. D. & Schroeder, J. I. Genetic strategies for improving crop yields. Nature 575, 109–118 (2019).

    CAS 

    Google Scholar
     

  • Wang, W., Vinocur, B. & Altman, A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218, 1–14 (2003).

    CAS 

    Google Scholar
     

  • Wang, X. et al. Emergent constraint on crop yield response to warmer temperature from field experiments. Nat. Sustain. 3, 908–916 (2020).


    Google Scholar
     

  • Tong, Y. et al. Adhesive and stimulus-responsive polydopamine-coated graphene oxide system for pesticide-loss control. J. Agric. Food Chem. 66, 2616–2622 (2018).

    CAS 

    Google Scholar
     

  • Cao, L. et al. Positive-charge functionalized mesoporous silica nanoparticles as nanocarriers for controlled 2,4-dichlorophenoxy acetic acid sodium salt release. J. Agric. Food Chem. 66, 6594–6603 (2018).

    CAS 

    Google Scholar
     

  • Sun, D. et al. Mesoporous silica nanoparticles enhance seedling growth and photosynthesis in wheat and lupin. Chemosphere 152, 81–91 (2016).

    CAS 

    Google Scholar
     

  • Fones, H. N. et al. Threats to global food security from emerging fungal and oomycete crop pathogens. Nat. Food 1, 332–342 (2020).


    Google Scholar
     

  • Zhao, L. et al. Nano-biotechnology in agriculture: use of nanomaterials to promote plant growth and stress tolerance. J. Agric. Food Chem. 68, 1935–1947 (2020).

    CAS 

    Google Scholar
     

  • Cai, L., Liu, C., Fan, G., Liu, C. & Sun, X. Preventing viral disease by ZnONPs through directly deactivating TMV and activating plant immunity in Nicotiana benthamiana. Environ. Sci. Nano 6, 3653–3669 (2019).

    CAS 

    Google Scholar
     

  • Dimkpa, C. O. et al. Facile coating of urea with low-dose ZnO nanoparticles promotes wheat performance and enhances Zn uptake under drought stress. Front. Plant Sci. 11, 168 (2020).


    Google Scholar
     

  • Ghabel, V. K. & Karamian, R. Effects of TiO2 nanoparticles and spermine on antioxidant responses of Glycyrrhiza glabra L. to cold stress. Acta Bot. Croat. 79, 137–147 (2020).

    CAS 

    Google Scholar
     

  • Latef, A. A. H. A. et al. Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degrad. Dev. 29, 1065–1073 (2018).


    Google Scholar
     

  • Cui, J., Li, Y., Jin, Q. & Li, F. Silica nanoparticles inhibit arsenic uptake into rice suspension cells via improving pectin synthesis and the mechanical force of the cell wall. Environ. Sci. Nano 7, 162–171 (2020).

    CAS 

    Google Scholar
     

  • Campos, E. V. R. et al. Carvacrol and linalool co-loaded in β-cyclodextrin-grafted chitosan nanoparticles as sustainable biopesticide aiming pest control. Sci. Rep. 8, 7623 (2018).


    Google Scholar
     

  • Carley, L. N. et al. Long-term effects of copper nanopesticides on soil and sediment community diversity in two outdoor mesocosm experiments. Environ. Sci. Technol. 54, 8878–8889 (2020).

    CAS 

    Google Scholar
     

  • Song, S. et al. Carboxymethyl chitosan modified carbon nanoparticle for controlled emamectin benzoate delivery: improved solubility, pH-responsive release, and sustainable pest control. ACS Appl. Mater. Interfaces 11, 34258–34267 (2019).

    CAS 

    Google Scholar
     

  • Kaziem, A. E., Gao, Y., He, S. & Li, J. Synthesis and insecticidal activity of enzyme-triggered functionalized hollow mesoporous silica for controlled release. J. Agric. Food Chem. 65, 7854–7864 (2017).

    CAS 

    Google Scholar
     

  • Yu, M. et al. Development of functionalized abamectin poly(lactic acid) nanoparticles with regulatable adhesion to enhance foliar retention. RSC Adv. 7, 11271–11280 (2017).

    CAS 

    Google Scholar
     

  • Gao, Y. et al. A hollow mesoporous silica and poly(diacetone acrylamide) composite with sustained-release and adhesion properties. Microporous Mesoporous Mater. 255, 15–22 (2018).

    CAS 

    Google Scholar
     

  • Jiao, W. B. et al. Porous graphitic biomass carbons as sustainable adsorption and controlled release carriers for atrazine fixation. ACS Sustain. Chem. Eng. 7, 20180–20189 (2019).

    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Temperature- and pH-responsive star polymers as nanocarriers with potential for in vivo agrochemical delivery. ACS Nano 14, 10954–10965 (2020).

    CAS 

    Google Scholar
     

  • Bombo, A. et al. A mechanistic view of interactions of a nanoherbicide with target organism. J. Agric. Food Chem. 67, 4453–4462 (2019).

    CAS 

    Google Scholar
     

  • Fincheira, P., Tortella, G., Duran, N., Seabra, A. B. & Rubilar, O. Current applications of nanotechnology to develop plant growth inducer agents as an innovation strategy. Crit. Rev. Biotechnol. 40, 15–30 (2020).

    CAS 

    Google Scholar
     

  • Abdallah, B. B., Andreu, I., Chatti, A., Landoulsi, A. & Gates, B. D. Size fractionation of titania nanoparticles in wild Dittrichia viscosa grown in a native environment. Environ. Sci. Technol. 54, 8649–8657 (2020).


    Google Scholar
     

  • Li, L. et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat. Sustain. 3, 929–937 (2020).


    Google Scholar
     

  • Oliveira, H. C. et al. Nanoencapsulation enhances the post-emergence herbicidal activity of atrazine against mustard plants. PLoS ONE 10, e0132971 (2015).


    Google Scholar
     

  • Sousa, G. F. M. et al. Post-emergence herbicidal activity of nanoatrazine against susceptible weeds. Front. Environ. Sci. 6, 12 (2018).


    Google Scholar
     

  • Xu, Z. P. et al. Subcellular compartment targeting of layered double hydroxide nanoparticles. J. Control. Release 130, 86–94 (2008).

    CAS 

    Google Scholar
     

  • Walker, T. S., Bais, H. P., Grotewold, E. & Vivanco, J. M. Root exudation and rhizosphere biology. Plant Physiol. 132, 44–51 (2003).

    CAS 

    Google Scholar
     

  • Fierer, N. et al. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342, 621–624 (2013).

    CAS 

    Google Scholar
     

  • Kopittke, P. M. et al. Methods to visualize elements in plants. Plant Physiol. 182, 1869–1882 (2020).

    CAS 

    Google Scholar
     

  • Chen, X., Zhu, Y., Yang, K., Zhu, L. & Lin, D. Nanoparticle TiO2 size and rutile content impact bioconcentration and biomagnification from algae to daphnia. Environ. Pollut. 247, 421–430 (2019).

    CAS 

    Google Scholar
     

  • Kah, M. & Kookana, R. Nanotechnology to develop novel agrochemicals: critical issues to consider in the global agricultural context. Environ. Sci. Nano 7, 1867–1873 (2020).

    CAS 

    Google Scholar
     

  • Zhao, L., Huang, Y. & Keller, A. A. Comparative metabolic response between cucumber (Cucumis sativus) and corn (Zea mays) to a Cu(OH)2 nanopesticide. J. Agric. Food Chem. 66, 6628–6636 (2018).

    CAS 

    Google Scholar
     

  • Fraceto L. F. et al. Nanopesticides – from Research and Development to Mechanisms of Action and Sustainable Use in Agriculture (Springer, 2020).

  • Parks, A. N. et al. Assessing the release of copper from nanocopper‐treated and conventional copper‐treated lumber into marine waters II: forms and bioavailability. Environ. Toxicol. Chem. 37, 1969–1979 (2018).

    CAS 

    Google Scholar
     

  • Parks, A. N. et al. Assessing the release of copper from nanocopper-treated and conventional copper-treated lumber into marine waters I: concentrations and rates. Environ. Toxicol. Chem. 37, 1956–1968 (2018).

    CAS 

    Google Scholar
     

  • Ho, K. T. et al. Effects of micronized and nanocopper azole on marine benthic communities. Environ. Toxicol. Chem. 37, 362–375 (2018).

    CAS 

    Google Scholar
     

  • Maruyama, C. R. et al. Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Sci. Rep. 6, 19768 (2016).

    CAS 

    Google Scholar
     

  • Guilger, M. et al. Biogenic silver nanoparticles based on trichoderma harzianum: synthesis, characterization, toxicity evaluation and biological activity. Sci. Rep. 7, 44421 (2017).

    CAS 

    Google Scholar
     

  • Majumdar, S. & Keller, A. A. Omics to address the opportunities and challenges of nanotechnology in agriculture. Crit. Rev. Environ. Sci. Technol. 51, 2595–2636 (2020).


    Google Scholar
     

  • Ankley, G. T. et al. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ. Toxicol. Chem. 29, 730–741 (2010).

    CAS 

    Google Scholar
     

  • Kaveh, R. et al. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ. Sci. Technol. 47, 10637–10644 (2013).

    CAS 

    Google Scholar
     

  • Pagano, L. et al. Molecular response of crop plants to engineered nanomaterials. Environ. Sci. Technol. 50, 7198–7207 (2016).

    CAS 

    Google Scholar
     

  • Molnar, A. et al. Nitro-oxidative signalling induced by chemically synthetized zinc oxide nanoparticles (ZnO NPs) in Brassica species. Chemosphere 251, 126419 (2020).

    CAS 

    Google Scholar
     

  • Ruotolo, R. et al. Plant response to metal-containing engineered nanomaterials: an omics-based perspective. Environ. Sci. Technol. 52, 2451–2467 (2018).

    CAS 

    Google Scholar
     

  • Lew, T. T. S. et al. Rational design principles for the transport and subcellular distribution of nanomaterials into plant protoplasts. Carbon 14, e1802086 (2018).


    Google Scholar
     

  • Santana, I., Wu, H., Hu, P. & Giraldo, J. P. Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nat. Commun. 11, 2045 (2020).

    CAS 

    Google Scholar
     

  • Kleinstiver, B. P. et al. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).

    CAS 

    Google Scholar
     

  • Wang, Y. et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32, 947–951 (2014).

    CAS 

    Google Scholar
     

  • Demirer, G. S. et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat. Nanotechnol. 14, 456–464 (2019).

    CAS 

    Google Scholar
     

  • Kwak, S. Y. et al. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat. Nanotechnol. 14, 447–455 (2019).

    CAS 

    Google Scholar
     

  • Zhang, H. et al. DNA nanostructures coordinate gene silencing in mature plants. Proc. Natl Acad. Sci. USA 116, 7543–7548 (2019).

    CAS 

    Google Scholar
     

  • Kumar, S. et al. Nanovehicles for plant modifications towards pest- and disease-resistance traits. Trends Plant Sci. 25, 198–212 (2020).

    CAS 

    Google Scholar
     

  • Grieger, K. et al. Best practices from nano-risk analysis relevant for other emerging technologies. Nat. Nanotechnol. 14, 998–1001 (2019).

    CAS 

    Google Scholar
     

  • Svendsen, C. et al. Key principles and operational practices for improved nanotechnology environmental exposure assessment. Nat. Nanotechnol. 15, 731–742 (2020).

    CAS 

    Google Scholar
     

  • Guidance on Information Requirements and Chemical Safety Assessment – Appendix R.6-1 for Nanoforms Applicable to the Guidance on QSARs and Grouping of Chemicals ECHA-19-H-15-EN (European Chemicals Agency, 2019); https://doi.org/10.2823/273911

  • Kookana, R. S. et al. Nanopesticides: guiding principles for regulatory evaluation of environmental risks. J. Agric. Food Chem. 62, 4227–4240 (2014).

    CAS 

    Google Scholar
     

  • Omran B. A. Nanobiotechnology: A Multidisciplinary Field of Science (Springer Nature, 2020).

  • Cassman, K. G. & Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 3, 262–268 (2020).


    Google Scholar
     

  • Espana-Sanchez, B. L. et al. Early stage of antibacterial damage of metallic nanoparticles by TEM and STEM-HAADF. Curr. Nanosci. 14, 54–61 (2018).

    CAS 

    Google Scholar
     

  • Perez-de-Luque, A. Interaction of nanomaterials with plants: what do we need for real applications in agriculture? Front. Environ. Sci. 5, 12 (2017).


    Google Scholar
     

  • Pradas del Real, A. E. et al. Silver nanoparticles and wheat roots: a complex interplay. Environ. Sci. Technol. 51, 5774–5782 (2017).

    CAS 

    Google Scholar
     

  • Wang, J. et al. Evidence of selective enrichment of bacterial assemblages and antibiotic resistant genes by microplastics in urban rivers. Water Res. 183, 116113 (2020).

    CAS 

    Google Scholar
     

  • Garcia-Sanchez, S., Bernales, I. & Cristobal, S. Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. BMC Genomics 16, 341 (2015).


    Google Scholar
     

  • Pagano, L., Caldara, E. M., White, M., Marmiroli, J. C. & Marmiroli, N. Engineered nanomaterial activity at the organelle level: impacts on the chloroplasts and mitochondria. ACS Sustain. Chem. Eng. 6, 12562–12579 (2018).

    CAS 

    Google Scholar
     

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published.