Emerging trends in the nanomedicine applications of functionalized magnetic nanoparticles as novel therapies for acute and chronic diseases | Journal of Nanobiotechnology

[ad_1]

  • Verma SK, Panda PK, Kumari P, Patel P, Arunima A, Jha E, et al. Determining factors for the nano-biocompatibility of cobalt oxide nanoparticles: proximal discrepancy in intrinsic atomic interactions at differential vicinage. Green Chem. 2021;23:3439–58.

    CAS 
    Article 

    Google Scholar
     

  • Lu C, Han L, Wang J, Wan J, Song G, Rao J. Engineering of magnetic nanoparticles as magnetic particle imaging tracers. Chem Soc Rev. 2021;50:8102–46.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen Y-T, Kolhatkar AG, Zenasni O, Xu S, Lee TR. Biosensing using magnetic particle detection techniques. Sensors. 2017;17(10):2300.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem Rev. 2015;115(19):10637–89.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Issadore D, Park YI, Shao H, Min C, Lee K, Liong M, et al. Magnetic sensing technology for molecular analyses. Lab Chip. 2014;14:2385–97.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Neamtu M, Nadejde C, Hodoroaba V-D, Schneider RJ, Verestiuc L, Panne U. Functionalized magnetic nanoparticles: synthesis, characterization, catalytic application and assessment of toxicity. Sci Rep. 2018;8:6278.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Mylkie K, Nowak P, Rybczynski P, Ziegler-Borowska M. Polymer-coated magnetite nanoparticles for protein immobilization. Materials (Basel). 2021;14(2):248.

    CAS 
    Article 

    Google Scholar
     

  • Heydari Sheikh Hossein H, Jabbari I, Zarepour A, Zarrabi A, Ashrafizadeh M, Taherian A, et al. Functionalization of magnetic nanoparticles by folate as potential MRI contrast agent for breast cancer diagnostics. Molecules. 2020;25(18):4053.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zhao S, Yu X, Qian Y, Chen W, Shen J. Multifunctional magnetic iron oxide nanoparticles: an advanced platform for cancer theranostics. Theranostics. 2020;10(14):6278–309.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhong J, Rösch EL, Viereck T, Schilling M, Ludwig F. Toward rapid and sensitive detection of SARS-CoV-2 with functionalized magnetic nanoparticles. ACS Sens. 2021;6(3):976–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Abarca-Cabrera L, Fraga-García P, Berensmeier S. Bio-nano interactions: binding proteins, polysaccharides, lipids and nucleic acids onto magnetic nanoparticles. Biomater Res. 2021;25:12.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kudr J, Haddad Y, Richtera L, Heger Z, Cernak M, Adam V, et al. Magnetic nanoparticles: from design and synthesis to real world applications. Nanomaterials. 2017;7(9):243.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Majidi S, ZeinaliSehrig F, Farkhani SM, SoleymaniGoloujeh M, Akbarzadeh A. Current methods for synthesis of magnetic nanoparticles. Artif Cells Nanomed Biotechnol. 2016;44:722–34.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Khizar S, Ahmad NM, Zine N, Jaffrezic-Renault N, Errachid-el-salhi A, Elaissari A. Magnetic nanoparticles: from synthesis to theranostic applications. ACS Appl Nano Mater. 2021;4(5):4284–306.

    CAS 
    Article 

    Google Scholar
     

  • Patel P, Nandi A, Jha E, Sinha A, Mohanty S, Panda PK, et al. Magnetic nanoparticles: fabrication, characterization, properties, and application for environment sustainability. In: Magnetic nanoparticle-based hybrid materials. London: Elsevier; 2021. p. 33–64.

    Chapter 

    Google Scholar
     

  • Lee H, Shin T-H, Cheon J, Weissleder R. Recent developments in magnetic diagnostic systems. Chem Rev. 2015;115(19):10690–724.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lu A-H, Salabas EL, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed. 2007;46(8):1222–44.

    CAS 
    Article 

    Google Scholar
     

  • Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 2010;62(3):284–304.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Maleki A, Niksefat M, Rahimi J, Hajizadeh Z. Design and preparation of Fe3O4@PVA polymeric magnetic nanocomposite film and surface coating by sulfonic acid via in situ methods and evaluation of its catalytic performance in the synthesis of dihydropyrimidines. BMC Chem. 2019;13(1):19.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shigeoka D, Yamazaki T, Ishikawa T, Miike K, Fujiwara K, Ide T, et al. Functionalization and magnetic relaxation of ferrite nanoparticles for theranostics. IEEE Trans Magn. 2018;54(11):6100707.

    Article 

    Google Scholar
     

  • Yalcin S, Gündüz U. Iron oxide-based polymeric magnetic nanoparticles for drug and gene delivery: in vitro and in vivo applications in cancer. In: Handbook of polymer and ceramic nanotechnology. Cham: Springer International Publishing; 2019. p. 1–22.


    Google Scholar
     

  • Sandler SE, Fellows B, Thompson MO. Best practices for characterization of magnetic nanoparticles for biomedical applications. Anal Chem. 2019;91(22):14159–69.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pellicer-Guridi R, Vogel MW, Reutens DC, Vegh V. Towards ultimate low frequency air-core magnetometer sensitivity. Sci Rep. 2017;7:2269.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Gaster RS, Xu L, Han S-J, Wilson RJ, Hall DA, Osterfeld SJ, et al. Quantification of protein interactions and solution transport using high-density GMR sensor arrays. Nat Nanotechnol. 2011;6:314–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chung HJ, Castro CM, Im H, Lee H, Weissleder R. A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria. Nat Nanotechnol. 2013;8:369–75.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kenning GG, Rodriguez R, Zotev VS, Moslemi A, Wilson S, Hawel L, et al. Detection of magnetically enhanced cancer tumors using SQUID magnetometry: a feasibility study. Rev Sci Instrum. 2005;76: 014303.

    Article 
    CAS 

    Google Scholar
     

  • Issa B, Obaidat I, Albiss B, Haik Y. Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci. 2013;14(11):21266–305.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Arun T, Verma SK, Panda PK, Joseyphus RJ, Jha E, Akbari-Fakhrabadi A, et al. Facile synthesized novel hybrid graphene oxide/cobalt ferrite magnetic nanoparticles based surface coating material inhibit bacterial secretion pathway for antibacterial effect. Mater Sci Eng C. 2019;104: 109932.

    CAS 
    Article 

    Google Scholar
     

  • Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S. Advances in magnetic nanoparticles for biomedical applications. Adv Healthc Mater. 2018;7(5):1700845.

    Article 
    CAS 

    Google Scholar
     

  • Feng Q, Liu Y, Huang J, Chen K, Huang J, Xiao K. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci Rep. 2018;8:2082.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Sheel R, Kumari P, Panda PK, Jawed Ansari MD, Patel P, Singh S, et al. Molecular intrinsic proximal interaction infer oxidative stress and apoptosis modulated in vivo biocompatibility of P. niruri contrived antibacterial iron oxide nanoparticles with zebrafish. Environ Pollut. 2020;267: 115482.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Malhotra N, Lee J-S, Liman RAD, Ruallo JMS, Villaflores OB, Ger T-R, et al. Potential toxicity of iron oxide magnetic nanoparticles: a review. Molecules. 2020;25(14):3159.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • van Reenen A, de Jong AM, den Toonder JMJ, Prins MWJ. Integrated lab-on-chip biosensing systems based on magnetic particle actuation—a comprehensive review. Lab Chip. 2014;14:1966–86.

    PubMed 
    Article 

    Google Scholar
     

  • Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacol Rep. 2012;64(5):1020–37.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Arias L, Pessan J, Vieira A, Lima T, Delbem A, Monteiro D. Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics. 2018;7(2):46.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Yallapu MM, Foy SP, Jain TK, Labhasetwar V. PEG-functionalized magnetic nanoparticles for drug delivery and magnetic resonance imaging applications. Pharm Res. 2010;27(11):2283–95.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chircov C, Grumezescu AM, Holban AM. Magnetic particles for advanced molecular diagnosis. Materials (Basel). 2019;12(13):2158.

    CAS 
    Article 

    Google Scholar
     

  • Tang C, He Z, Liu H, Xu Y, Huang H, Yang G, et al. Application of magnetic nanoparticles in nucleic acid detection. J Nanobiotechnol. 2020;18:62.

    Article 

    Google Scholar
     

  • Masud MK, Na J, Younus M, Hossain MSA, Bando Y, Shiddiky MJA, et al. Superparamagnetic nanoarchitectures for disease-specific biomarker detection. Chem Soc Rev. 2019;48:5717–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • de Dios AS, Díaz-García ME. Multifunctional nanoparticles: analytical prospects. Anal Chim Acta. 2010;666(1–2):1–22.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Dash S, Balasubramaniam M, Dash C, Pandhare J. Biotin-based pulldown assay to validate mRNA targets of cellular miRNAs. J Vis Exp. 2018;12(136):57786.


    Google Scholar
     

  • Gessner I, Fries JWU, Brune V, Mathur S. Magnetic nanoparticle-based amplification of microRNA detection in body fluids for early disease diagnosis. J Mater Chem B. 2021;9:9–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Anderson SD, Gwenin VV, Gwenin CD. Magnetic functionalized nanoparticles for biomedical, drug delivery and imaging applications. Nanoscale Res Lett. 2019;14:188.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ale Ebrahim S, Ashtari A, Zamani Pedram M, Ale EN. Publication trends in drug delivery and magnetic nanoparticles. Nanoscale Res Lett. 2019;14:164.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hannon GJ. RNA interference. Nature. 2002;418:244–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet. 2007;8:173–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hu B, Weng Y, Xia X, Liang X, Huang Y. Clinical advances of siRNA therapeutics. J Gene Med. 2019;21(7): e3097.

    PubMed 
    Article 

    Google Scholar
     

  • Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee S-S. Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids. 2017;8:132–43.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Setten RL, Rossi JJ, Han S. The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov. 2019;18:421–46.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mishra DK, Balekar N, Mishra PK. Nanoengineered strategies for siRNA delivery: from target assessment to cancer therapeutic efficacy. Drug Deliv Transl Res. 2017;7(2):346–58.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fiszer A, Krzyzosiak WJ. Oligonucleotide-based strategies to combat polyglutamine diseases. Nucleic Acids Res. 2014;42(11):6787–810.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dowaidar M, Abdelhamid HN, Hällbrink M, Zou X, Langel Ü. Graphene oxide nanosheets in complex with cell penetrating peptides for oligonucleotides delivery. Biochim Biophys Acta Gen Subj. 2017;1861(9):2334–41.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Boisguérin P, Deshayes S, Gait MJ, O’Donovan L, Godfrey C, Betts CA, et al. Delivery of therapeutic oligonucleotides with cell penetrating peptides. Adv Drug Deliv Rev. 2015;87:52–67.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ganjeifar B, Morshed SF. Targeted Drug Delivery in brain tumors-nanochemistry applications and advances. Curr Top Med Chem. 2020;20(22):1202–23.


    Google Scholar
     

  • Yin PT, Pongkulapa T, Cho H-Y, Han J, Pasquale NJ, Rabie H, et al. Overcoming chemoresistance in cancer via combined microRNA therapeutics with anticancer drugs using multifunctional magnetic core-shell nanoparticles. ACS Appl Mater Interfaces. 2018;10(32):26954–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yin PT, Shah BP, Lee K-B. Combined magnetic nanoparticle-based microRNA and hyperthermia therapy to enhance apoptosis in brain cancer cells. Small. 2014;10(20):4106–12.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gessner I, Yu X, Jüngst C, Klimpel A, Wang L, Fischer T, et al. Selective capture and purification of microRNAs and intracellular proteins through antisense-vectorized magnetic nanobeads. Sci Rep. 2019;9:2069.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Do HD, Ménager C, Michel A, Seguin J, Korichi T, Dhotel H, et al. Development of theranostic cationic liposomes designed for image-guided delivery of nucleic acid. Pharmaceutics. 2020;12(9):854.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sosa-Acosta JR, Iriarte-Mesa C, Ortega GA, Díaz-García AM. DNA–iron oxide nanoparticles conjugates: functional magnetic nanoplatforms in biomedical applications. Top Curr Chem. 2020;378:19–47.

    Article 
    CAS 

    Google Scholar
     

  • Dalmina M, Pittella F, Sierra JA, Souza GRR, Silva AH, Pasa AA, et al. Magnetically responsive hybrid nanoparticles for in vitro siRNA delivery to breast cancer cells. Mater Sci Eng C. 2019;99:1182–90.

    CAS 
    Article 

    Google Scholar
     

  • Titze de Almeida S, Horst C, Soto-Sánchez C, Fernandez E, Titze de Almeida R. Delivery of miRNA-targeted oligonucleotides in the rat striatum by magnetofection with Neuromag®. Molecules. 2018;23(7):1825.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Dowaidar M, Abdelhamid HN, Hällbrink M, Freimann K, Kurrikoff K, Zou X, et al. Magnetic nanoparticle assisted self-assembly of cell penetrating peptides-oligonucleotides complexes for gene delivery. Sci Rep. 2017;7:9159.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Grabowska M, Grześkowiak BF, Szutkowski K, Wawrzyniak D, Głodowicz P, Barciszewski J, et al. Nano-mediated delivery of double-stranded RNA for gene therapy of glioblastoma multiforme. PLoS ONE. 2019;14(3): e0213852.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jin L, Wang Q, Chen J, Wang Z, Xin H, Zhang D. Efficient delivery of therapeutic siRNA by Fe3O4 magnetic nanoparticles into oral cancer cells. Pharmaceutics. 2019;11(11):615.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bhattacharjee R, Nandi A, Mitra P, Saha K, Patel P, Jha E, et al. Theragnostic application of nanoparticle and CRISPR against food-borne multi-drug resistant pathogens. Mater Today Bio. 2022;15: 100291.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat Rev Clin Oncol. 2011;8:467–77.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gupta S, Panda PK, Hashimoto RF, Samal SK, Mishra S, Verma SK, et al. Dynamical modeling of miR-34a, miR-449a, and miR-16 reveals numerous DDR signaling pathways regulating senescence, autophagy, and apoptosis in HeLa cells. Sci Rep. 2022;12:4911.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nath A, Bhattacharjee R, Nandi A, Sinha A, Kar S, Manoharan N, et al. Phage delivered CRISPR-Cas system to combat multidrug-resistant pathogens in gut microbiome. Biomed Pharmacother. 2022;151: 113122.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen K-H, Pan M-J, Jargalsaikhan Z, Ishdorj T-O, Tseng F-G. Development of surface-enhanced raman scattering (SERS)-based surface-corrugated nanopillars for biomolecular detection of colorectal cancer. Biosensors. 2020;10(11):163.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jebelli A, Oroojalian F, Fathi F, Mokhtarzadeh A, de la Guardia M. Recent advances in surface plasmon resonance biosensors for microRNAs detection. Biosens Bioelectron. 2020;169: 112599.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li F, Mei L, Zhan C, Mao Q, Yao M, Wang S, et al. Liquid hybridization and solid phase detection: a highly sensitive and accurate strategy for microRNA detection in plants and animals. Int J Mol Sci. 2016;17(9):1457.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Cacheux J, Bancaud A, Leichlé T, Cordelier P. Technological challenges and future issues for the detection of circulating microRNAs in patients with cancer. Front Chem. 2019;7:815.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, et al. miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells. 2020;9(2):276.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Johnson BN, Mutharasan R. Biosensor-based microRNA detection: techniques, design, performance, and challenges. Analyst. 2014;139:1576–88.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pogribny IP. MicroRNAs as biomarkers for clinical studies. Exp Biol Med. 2018;243(3):283–90.

    CAS 
    Article 

    Google Scholar
     

  • Su D, Wu K, Saha R, Liu J, Wang J-P. Magnetic nanotechnologies for early cancer diagnostics with liquid biopsies: a review. J Cancer Metastasis Treat. 2020;2020(6):19.


    Google Scholar
     

  • Naz S, Shamoon M, Wang R, Zhang L, Zhou J, Chen J. Advances in therapeutic implications of inorganic drug delivery nano-platforms for cancer. Int J Mol Sci. 2019;20(4):965.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Iyer SR, Xu S, Stains JP, Bennett CH, Lovering RM. Superparamagnetic iron oxide nanoparticles in musculoskeletal biology. Tissue Eng Part B Rev. 2017;23(4):373–85.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • WHO-Cardiovascular Diseases. World Health Organization. https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1. 2021.

  • Neuwelt A, Sidhu N, Hu C-AA, Mlady G, Eberhardt SC, Sillerud LO. Iron-based superparamagnetic nanoparticle contrast agents for MRI of infection and inflammation. Am J Roentgenol. 2015;204(3):W302–13.

    Article 

    Google Scholar
     

  • Vazquez-Prada KX, Lam J, Kamato D, Xu ZP, Little PJ, Ta HT. Targeted molecular imaging of cardiovascular diseases by iron oxide nanoparticles. Arterioscler Thromb Vasc Biol. 2021;41(2):601–13.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tang J, Lobatto ME, Read JC, Mieszawska AJ, Fayad ZA, Mulder WJM. Nanomedical theranostics in cardiovascular disease. Curr Cardiovasc Imaging Rep. 2012;5(1):19–25.

    PubMed 
    Article 

    Google Scholar
     

  • Wenzel D. Magnetic nanoparticles: novel options for vascular repair? Nanomedicine. 2016;11(8):869–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bietenbeck M, Engel S, Lamping S, Hansen U, Faber C, Ravoo BJ, et al. Functionalization of clinically approved MRI contrast agents for the delivery of VEGF. Bioconj Chem. 2019;30(4):1042–7.

    CAS 
    Article 

    Google Scholar
     

  • Atluri V, Jayant R, Pilakka-Kanthikeel S, Garcia G, Thangavel S, Yndart A, et al. Development of TIMP1 magnetic nanoformulation for regulation of synaptic plasticity in HIV-1 infection. Int J Nanomed. 2016;11:4287–98.

    CAS 
    Article 

    Google Scholar
     

  • Li W, Yalcin M, Bharali DJ, Lin Q, Godugu K, Fujioka K, et al. Pharmacokinetics, biodistribution, and anti-angiogenesis efficacy of diamino propane tetraiodothyroacetic acid-conjugated biodegradable polymeric nanoparticle. Sci Rep. 2019;9:9006.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Richards JMJ, Shaw CA, Lang NN, Williams MC, Semple SIK, MacGillivray TJ, et al. In vivo mononuclear cell tracking using superparamagnetic particles of iron oxide. Circ Cardiovasc Imaging. 2012;5(4):509–17.

    PubMed 
    Article 

    Google Scholar
     

  • Chen J, Zhang X, Millican R, Sherwood J, Martin S, Jo H, et al. Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis. Adv Drug Deliv Rev. 2021;170:142–99.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Abdalla AME, Xiao L, Ullah MW, Yu M, Ouyang C, Yang G. Current challenges of cancer anti-angiogenic therapy and the promise of nanotherapeutics. Theranostics. 2018;8(2):533–48.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knüchel R, Kiessling F, et al. Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev. 2019;138:302–25.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • George SJ, Baker AH. Gene transfer to the vasculature. Mol Biotechnol. 2002;22:153–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vosen S, Rieck S, Heidsieck A, Mykhaylyk O, Zimmermann K, Plank C, et al. Improvement of vascular function by magnetic nanoparticle-assisted circumferential gene transfer into the native endothelium. J Control Release. 2016;241:164–73.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vosen S, Rieck S, Heidsieck A, Mykhaylyk O, Zimmermann K, Bloch W, et al. Vascular repair by circumferential cell therapy using magnetic nanoparticles and tailored magnets. ACS Nano. 2016;10(1):369–76.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Flores AM, Ye J, Jarr K-U, Hosseini-Nassab N, Smith BR, Leeper NJ. Nanoparticle therapy for vascular diseases. Arterioscler Thromb Vasc Biol. 2019;39(4):635–46.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Feigin VL, Vos T, Nichols E, Owolabi MO, Carroll WM, Dichgans M, et al. The global burden of neurological disorders: translating evidence into policy. Lancet Neurol. 2020;19(3):255–65.

    PubMed 
    Article 

    Google Scholar
     

  • Ylä-Herttuala S, Baker AH. Cardiovascular gene therapy: past, present, and future. Mol Ther. 2017;25(5):1095–106.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Cannatà A, Ali H, Sinagra G, Giacca M. Gene therapy for the heart lessons learned and future perspectives. Circ Res. 2020;126(10):1394–414.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Feigin VL, Nichols E, Alam T, Bannick MS, Beghi E, Blake N, et al. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:459–80.

    Article 

    Google Scholar
     

  • Obeso JA, et al. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med. 2001;345(13):956–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Deisseroth K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci. 2015;18:1213–25.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Grossman N, Bono D, Dedic N, Kodandaramaiah SB, Rudenko A, Suk H-J, et al. Noninvasive deep brain stimulation via temporally interfering electric fields. Cell. 2017;169(6):1029–41.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Legon W, Sato TF, Opitz A, Mueller J, Barbour A, Williams A, et al. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci. 2014;17:322–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wells J, Kao C, Jansen ED, Konrad P, Mahadevan-Jansen A. Application of infrared light for in vivo neural stimulation. J Biomed Opt. 2005;10(6): 064003.

    PubMed 
    Article 

    Google Scholar
     

  • Carvalho-de-Souza JL, Treger JS, Dang B, Kent SBH, Pepperberg DR, Bezanilla F. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron. 2015;86(1):207–17.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen S, Weitemier AZ, Zeng X, He L, Wang X, Tao Y, et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science. 2018;359(6376):679–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Soto-Sánchez C, Martínez-Navarrete G, Humphreys L, Puras G, Zarate J, Pedraz JL, et al. Enduring high-efficiency in vivo transfection of neurons with non-viral magnetoparticles in the rat visual cortex for optogenetic applications. Nanomed Nanotechnol Biol Med. 2015;11(4):835–43.

    Article 
    CAS 

    Google Scholar
     

  • Wen X, Wang K, Zhao Z, Zhang Y, Sun T, Zhang F, et al. Brain-targeted delivery of trans-activating transcriptor-conjugated magnetic PLGA/lipid nanoparticles. PLoS ONE. 2014;9: e106652.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ahlawat J, Guillama Barroso G, Masoudi Asil S, Alvarado M, Armendariz I, Bernal J, et al. Nanocarriers as potential drug delivery candidates for overcoming the blood–brain barrier: challenges and possibilities. ACS Omega. 2020;5(22):12583–95.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pardridge WM. Blood–brain barrier and delivery of protein and gene therapeutics to brain. Front Aging Neurosci. 2020;11:373.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Daneman R, Prat A. The blood–brain barrier. Cold Spring Harb Perspect Biol. 2015;7(1): a020412.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guiot C, Zullino S, Priano L, Cavalli R. The physics of drug-delivery across the blood–brain barrier. Ther Deliv. 2016;7(3):153–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lakshmanan S, Gupta GK, Avci P, Chandran R, Sadasivam M, Jorge AES, et al. Physical energy for drug delivery; poration, concentration and activation. Adv Drug Deliv Rev. 2014;71:98–114.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Appelboom G, Detappe A, LoPresti M, Kunjachan S, Mitrasinovic S, Goldman S, et al. Stereotactic modulation of blood–brain barrier permeability to enhance drug delivery. Neuro Oncol. 2016;18(12):1601–9.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dilnawaz F, Sahoo SK. Therapeutic approaches of magnetic nanoparticles for the central nervous system. Drug Discov Today. 2015;20(10):1256–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kaushik A, Jayant RD, Nikkhah-Moshaie R, Bhardwaj V, Roy U, Huang Z, et al. Magnetically guided central nervous system delivery and toxicity evaluation of magneto-electric nanocarriers. Sci Rep. 2016;6:25309.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kaushik A, Jayant RD, Sagar V, Nair M. The potential of magneto-electric nanocarriers for drug delivery. Expert Opin Drug Deliv. 2014;11(10):1635–46.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tabatabaei SN, Girouard H, Carret A-S, Martel S. Toward nonsystemic delivery of therapeutics across the blood–brain barrier. Nanomedicine. 2015;10(14):2129–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Thomsen LB, Thomsen MS, Moos T. Targeted drug delivery to the brain using magnetic nanoparticles. Ther Deliv. 2015;6(10):1145–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lu X, Zhang Y, Wang L, Li G, Gao J, Wang Y. Development of l-carnosine functionalized iron oxide nanoparticles loaded with dexamethasone for simultaneous therapeutic potential of blood brain barrier crossing and ischemic stroke treatment. Drug Deliv. 2021;28(1):380–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu H-L, Yang H-W, Hua M-Y, Wei K-C. Enhanced therapeutic agent delivery through magnetic resonance imaging–monitored focused ultrasound blood–brain barrier disruption for brain tumor treatment: an overview of the current preclinical status. Neurosurg Focus. 2012;32(1):E4.

    PubMed 
    Article 

    Google Scholar
     

  • Qiu Y, Tong S, Zhang L, Sakurai Y, Myers DR, Hong L, et al. Magnetic forces enable controlled drug delivery by disrupting endothelial cell–cell junctions. Nat Commun. 2017;8:15594.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yin L, Juneja R, Lindsay L, Pandey T, Parker DS. Semihard iron-based permanent-magnet materials. Phys Rev Appl. 2021;15: 024012.

    CAS 
    Article 

    Google Scholar
     

  • Busquets M, Espargaró A, Sabaté R, Estelrich J. Magnetic nanoparticles cross the blood–brain barrier: when physics rises to a challenge. Nanomaterials. 2015;5:2231–48.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Natarajan S, Harini K, Gajula GP, Sarmento B, Neves-Petersen MT, Thiagarajan V. Multifunctional magnetic iron oxide nanoparticles: diverse synthetic approaches, surface modifications, cytotoxicity towards biomedical and industrial applications. BMC Mater. 2019;1:2.

    Article 

    Google Scholar
     

  • Toth GB, Varallyay CG, Horvath A, Bashir MR, Choyke PL, Daldrup-Link HE, et al. Current and potential imaging applications of ferumoxytol for magnetic resonance imaging. Kidney Int. 2017;92(1):47–66.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Provenzano R, Schiller B, Rao M, Coyne D, Brenner L, Pereira BJG. Ferumoxytol as an intravenous iron replacement therapy in hemodialysis patients. Clin J Am Soc Nephrol. 2009;4(2):386–93.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Israel LL, Galstyan A, Holler E, Ljubimova JY. Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain. J Control Release. 2020;320:45–62.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vinzant N, Scholl JL, Wu C-M, Kindle T, Koodali R, Forster GL. Iron oxide nanoparticle delivery of peptides to the brain: reversal of anxiety during drug withdrawal. Front Neurosci. 2017;11:608.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Norouzi M, Yathindranath V, Thliveris JA, Kopec BM, Siahaan TJ, Miller DW. Doxorubicin-loaded iron oxide nanoparticles for glioblastoma therapy: a combinational approach for enhanced delivery of nanoparticles. Sci Rep. 2020;10:11292.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Dash S, Balasubramaniam M, Villalta F, Dash C, Pandhare J. Impact of cocaine abuse on HIV pathogenesis. Front Microbiol. 2015;6:1111.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jayant R, Atluri V, Agudelo M, Sagar V, Kaushik A, Nair M. Sustained-release nanoART formulation for the treatment of neuroAIDS. Int J Nanomed. 2015;10:1077–93.

    CAS 
    Article 

    Google Scholar
     

  • Rodriguez M, Kaushik A, Lapierre J, Dever SM, El-Hage N, Nair M. Electro-magnetic nano-particle bound Beclin1 siRNA crosses the blood–brain barrier to attenuate the inflammatory effects of HIV-1 infection in vitro. J Neuroimmune Pharmacol. 2017;12(1):120–32.

    PubMed 
    Article 

    Google Scholar
     

  • Sagar V, Atluri VSR, Pilakka-Kanthikeel S, Nair M. Magnetic nanotherapeutics for dysregulated synaptic plasticity during neuroAIDS and drug abuse. Mol Brain. 2016;9:57.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Farzin A, Etesami SA, Quint J, Memic A, Tamayol A. Magnetic nanoparticles in cancer therapy and diagnosis. Adv Healthc Mater. 2020;9(9):1901058.

    CAS 
    Article 

    Google Scholar
     

  • WHO-Cancer. WHO. https://www.who.int/news-room/fact-sheets/detail/cancer. 2021.

  • American Cancer Society (ACS). Global cancer burden. American Cancer Society (ACS). https://www.cancer.org/health-care-professionals/our-global-health-work/global-cancer-burden.html. 2021.

  • Mohan A, Dipallini S, Lata S, Mohanty S, Pradhan PK, Patel P, et al. Oxidative stress induced antimicrobial efficacy of chitosan and silver nanoparticles coated Gutta-percha for endodontic applications. Mater Today Chem. 2020;17: 100299.

    CAS 
    Article 

    Google Scholar
     

  • Mukherjee S, Liang L, Veiseh O. Recent advancements of magnetic nanomaterials in cancer therapy. Pharmaceutics. 2020;12(2):147.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kheirkhah P, Denyer S, Bhimani AD, Arnone GD, Esfahani DR, Aguilar T, et al. Magnetic drug targeting: a novel treatment for intramedullary spinal cord tumors. Sci Rep. 2018;8:11417.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Racca L, Cauda V. Remotely activated nanoparticles for anticancer therapy. Nano-Micro Lett. 2021;13:11.

    Article 
    CAS 

    Google Scholar
     

  • Foglia S, Ledda M, Fioretti D, Iucci G, Papi M, Capellini G, et al. In vitro biocompatibility study of sub-5 nm silica-coated magnetic iron oxide fluorescent nanoparticles for potential biomedical application. Sci Rep. 2017;7:46513.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Srisa-nga K, Mankhetkorn S, Okonogi S, Khonkarn R. Delivery of superparamagnetic polymeric micelles loaded with quercetin to hepatocellular carcinoma cells. J Pharm Sci. 2019;108(2):996–1006.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nagesh PKB, Johnson NR, Boya VKN, Chowdhury P, Othman SF, Khalilzad-Sharghi V, et al. PSMA targeted docetaxel-loaded superparamagnetic iron oxide nanoparticles for prostate cancer. Colloids Surf B Biointerfaces. 2016;144:8–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Quinto CA, Mohindra P, Tong S, Bao G. Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment. Nanoscale. 2015;7(29):12728–36.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fortin J-P, Wilhelm C, Servais J, Ménager C, Bacri J-C, Gazeau F. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc. 2007;129(9):2628–35.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhou Y, Wang R, Teng Z, Wang Z, Hu B, Kolios M, et al. Magnetic nanoparticle-promoted droplet vaporization for in vivo stimuli-responsive cancer theranostics. NPG Asia Mater. 2016;8: e313.

    CAS 
    Article 

    Google Scholar
     

  • Wang P, Liu Q, Zhao H, Bishop JO, Zhou G, Olson LK, et al. miR-216a-targeting theranostic nanoparticles promote proliferation of insulin-secreting cells in type 1 diabetes animal model. Sci Rep. 2020;10:5302.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Borroni E, Miola M, Ferraris S, Ricci G, ŽužekRožman K, Kostevšek N, et al. Tumor targeting by lentiviral vectors combined with magnetic nanoparticles in mice. Acta Biomater. 2017;59:303–16.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huh Y-M, Lee E-S, Lee J-H, Jun Y-W, Kim P-H, Yun C-O, et al. Hybrid nanoparticles for magnetic resonance imaging of target-specific viral gene delivery. Adv Mater. 2007;19:3109–12.

    CAS 
    Article 

    Google Scholar
     

  • WHO-COVID-19. World Health organization. https://www.who.int/emergencies/diseases/novel-coronavirus-2019. 2021.

  • Bhalla N, Pan Y, Yang Z, Payam AF. Opportunities and challenges for biosensors and nanoscale analytical tools for pandemics: COVID-19. ACS Nano. 2020;14(7):7783–807.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Seo G, Lee G, Kim MJ, Baek S-H, Choi M, Ku KB, et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano. 2020;14(4):5135–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mahari S, Roberts A, Shahdeo D, Gandhi S. eCovSens-ultrasensitive novel in-house built printed circuit board based electrochemical device for rapid detection of nCovid-19 antigen, a spike protein domain 1 of SARS-CoV-2. bioRxiv. 2020. https://doi.org/10.1101/2020.04.24.059204.

    Article 

    Google Scholar
     

  • Tian B, Gao F, Fock J, Dufva M, Hansen MF. Homogeneous circle-to-circle amplification for real-time optomagnetic detection of SARS-CoV-2 RdRp coding sequence. Biosens Bioelectron. 2020;165: 112356.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Somvanshi SB, Kharat PB, Saraf TS, Somwanshi SB, Shejul SB, Jadhav KM. Multifunctional nano-magnetic particles assisted viral RNA-extraction protocol for potential detection of COVID-19. Mater Res Innov. 2021;25(3):169–74.

    Article 
    CAS 

    Google Scholar
     

  • Chacón-Torres JC, Reinoso C, Navas-León DG, Briceño S, González G. Optimized and scalable synthesis of magnetic nanoparticles for RNA extraction in response to developing countries’ needs in the detection and control of SARS-CoV-2. Sci Rep. 2020;10:19004.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Shubayev VI, Pisanic TR, Jin S. Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev. 2009;61(6):467–77.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Markides H, Rotherham M, El Haj AJ. Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J Nanomater. 2012;2012: 614094.

    Article 
    CAS 

    Google Scholar
     

  • Liu G, Gao J, Ai H, Chen X. Applications and potential toxicity of magnetic iron oxide nanoparticles. Small. 2013;9:1533–45.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Verma SK, Jha E, Panda PK, Thirumurugan A, Suar M. Biological effects of green-synthesized metal nanoparticles: a mechanistic view of antibacterial activity and cytotoxicity. In: Advanced nanostructured materials for environmental remediation. Cham: Springer; 2019. p. 145–71.

    Chapter 

    Google Scholar
     

  • Winkler DA. Role of artificial intelligence and machine learning in nanosafety. Small. 2020;16(36):2001883.

    CAS 
    Article 

    Google Scholar
     

  • Ho D, Wang P, Kee T. Artificial intelligence in nanomedicine. Nanoscale Horiz. 2019;4:365–77.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Singh AV, Ansari MHD, Rosenkranz D, Maharjan RS, Kriegel FL, Gandhi K, et al. Artificial intelligence and machine learning in computational nanotoxicology: unlocking and empowering nanomedicine. Adv Healthc Mater. 2020;9(17):1901862.

    CAS 
    Article 

    Google Scholar
     

  • Adir O, Poley M, Chen G, Froim S, Krinsky N, Shklover J, et al. Integrating artificial intelligence and nanotechnology for precision cancer medicine. Adv Mater. 2020;32(13): e1901989.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Ekins S, Puhl AC, Zorn KM, Lane TR, Russo DP, Klein JJ, et al. Exploiting machine learning for end-to-end drug discovery and development. Nat Mater. 2019;18:435–41.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wu K, Su D, Liu J, Saha R, Wang J-P. Magnetic nanoparticles in nanomedicine: a review of recent advances. Nanotechnology. 2019;30(50): 502003.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vangijzegem T, Stanicki D, Laurent S. Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opin Drug Deliv. 2019;16(1):69–78.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen C, Wang P, Li L. Applications of bacterial magnetic nanoparticles in nanobiotechnology. J Nanosci Nanotechnol. 2016;16:2164–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Maldonado-Camargo L, Unni M, Rinaldi C. Magnetic characterization of iron oxide nanoparticles for biomedical applications. Methods Mol Biol. 2017;1570:47–71.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gudovan D, Balaure P, Mihăiescu D, Fudulu A, Purcăreanu B, Radu M. Functionalized magnetic nanoparticles for biomedical applications. Curr Pharm Des. 2015;21(42):6038–54.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Redolfi Riva E, Sinibaldi E, Grillone AF, Del Turco S, Mondini A, Li T, et al. Enhanced in vitro magnetic cell targeting of doxorubicin-loaded magnetic liposomes for localized cancer therapy. Nanomaterials. 2020;10(11):2104.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lee N, Kim H, Choi SH, Park M, Kim D, Kim H-C, et al. Magnetosome-like ferrimagnetic iron oxide nanocubes for highly sensitive MRI of single cells and transplanted pancreatic islets. Proc Natl Acad Sci. 2011;108(7):2662–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Scheenen TWJ, Zamecnik P. The role of magnetic resonance imaging in (future) cancer staging. Invest Radiol. 2021;56:42–9.

    PubMed 
    Article 

    Google Scholar
     

  • Yang Z, Duan J, Wang J, Liu Q, Shang R, Yang X, et al. Superparamagnetic iron oxide nanoparticles modified with polyethylenimine and galactose for siRNA targeted delivery in hepatocellular carcinoma therapy. Int J Nanomed. 2018;13:1851–65.

    CAS 
    Article 

    Google Scholar
     

  • Setua S, Khan S, Yallapu MM, Behrman SW, Sikander M, Khan SS, et al. Restitution of tumor suppressor microRNA-145 using magnetic nanoformulation for pancreatic cancer therapy. J Gastrointest Surg. 2017;21:94–105.

    PubMed 
    Article 

    Google Scholar
     

  • Nagesh P, Chowdhury P, Hatami E, Boya V, Kashyap V, Khan S, et al. miRNA-205 nanoformulation sensitizes prostate cancer cells to chemotherapy. Cancers (Basel). 2018;10:289.

    Article 
    CAS 

    Google Scholar
     

  • Luo X, Peng X, Hou J, Wu S, Shen J, Wang L. Folic acid-functionalized polyethylenimine superparamagnetic iron oxide nanoparticles as theranostic agents for magnetic resonance imaging and PD-L1 siRNA delivery for gastric cancer. Int J Nanomed. 2017;12:5331–43.

    CAS 
    Article 

    Google Scholar
     

  • Unterweger H, Janko C, Schwarz M, Dézsi L, Urbanics R, Matuszak J, et al. Non-immunogenic dextran-coated superparamagnetic iron oxide nanoparticles: a biocompatible, size-tunable contrast agent for magnetic resonance imaging. Int J Nanomed. 2017;12:5223–38.

    CAS 
    Article 

    Google Scholar
     

  • Arami S, Rashidi M, Mahdavi M, Fathi M, Entezami A. Synthesis and characterization of Fe3O4-PEG-LAC-chitosan-PEI nanoparticle as a survivin siRNA delivery system. Hum Exp Toxicol. 2017;36:227–37.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Parsian M, Unsoy G, Mutlu P, Yalcin S, Tezcaner A, Gunduz U. Loading of gemcitabine on chitosan magnetic nanoparticles increases the anti-cancer efficacy of the drug. Eur J Pharmacol. 2016;784:121–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu M-C, Jin S, Zheng M, Wang Y, Zhao P, Tang D, et al. Daunomycin-loaded superparamagnetic iron oxide nanoparticles: preparation, magnetic targeting, cell cytotoxicity, and protein delivery research. J Biomater Appl. 2016;31:261–72.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Song M, Kim Y-J, Kim Y-H, Roh J, Kim E-C, Lee HJ, et al. Long-term effects of magnetically targeted ferumoxide-labeled human neural stem cells in focal cerebral ischemia. Cell Transplant. 2015;24(2):183–90.

    PubMed 
    Article 

    Google Scholar
     

  • Winter PM, Caruthers SD, Zhang H, Williams TA, Wickline SA, Lanza GM. Antiangiogenic synergism of integrin-targeted fumagillin nanoparticles and atorvastatin in atherosclerosis. JACC Cardiovasc Imaging. 2008;1(5):624–34.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cyrus T, Zhang H, Allen JS, Williams TA, Hu G, Caruthers SD, et al. Intramural delivery of rapamycin with αvβ3-targeted paramagnetic nanoparticles inhibits stenosis after balloon injury. Arterioscler Thromb Vasc Biol. 2008;28:820–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Friedrich RP, Zaloga J, Schreiber E, Tóth IY, Tombácz E, Lyer S, et al. Tissue plasminogen activator binding to superparamagnetic iron oxide nanoparticle—covalent versus adsorptive approach. Nanoscale Res Lett. 2016;11(1):297.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Tadayon A, Jamshidi R, Esmaeili A. Delivery of tissue plasminogen activator and streptokinase magnetic nanoparticles to target vascular diseases. Int J Pharm. 2015;495:428–38.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ma Y-H, Wu S-Y, Wu T, Chang Y-J, Hua M-Y, Chen J-P. Magnetically targeted thrombolysis with recombinant tissue plasminogen activator bound to polyacrylic acid-coated nanoparticles. Biomaterials. 2009;30:3343–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gao N, Bozeman EN, Qian W, Wang L, Chen H, Lipowska M, et al. Tumor penetrating theranostic nanoparticles for enhancement of targeted and image-guided drug delivery into peritoneal tumors following intraperitoneal delivery. Theranostics. 2017;7(6):1689–704.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen P, Jiang X, Huang K, Hu P, Li X, Wei L, et al. Multimode microRNA sensing via multiple enzyme-free signal amplification and cation-exchange reaction. ACS Appl Mater Interfaces. 2019;11(40):36476–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li X, Zhao J, Xu R, Pan L, Liu Y-M. Mass spectrometric quantification of microRNAs in biological samples based on multistage signal amplification. Analyst. 2020;145:1783–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nourani S, Ghourchian H, Boutorabi SM. Magnetic nanoparticle-based immunosensor for electrochemical detection of hepatitis B surface antigen. Anal Biochem. 2013;441:1–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hassen WM, Chaix C, Abdelghani A, Bessueille F, Leonard D, Jaffrezic-Renault N. An impedimetric DNA sensor based on functionalized magnetic nanoparticles for HIV and HBV detection. Sens Actuators B Chem. 2008;134(2):755–60.

    CAS 
    Article 

    Google Scholar
     

  • Tian B, Han Y, Wetterskog E, Donolato M, Hansen MF, Svedlindh P, et al. MicroRNA detection through DNAzyme-mediated disintegration of magnetic nanoparticle assemblies. ACS Sens. 2018;3(9):1884–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang F, Luo L, Gong H, Chen C, Cai C. A magnetic molecularly imprinted optical chemical sensor for specific recognition of trace quantities of virus. RSC Adv. 2018;8:32262–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rohiwal SS, Dvorakova N, Klima J, Vaskovicova M, Senigl F, Slouf M, et al. Polyethylenimine based magnetic nanoparticles mediated non-viral CRISPR/Cas9 system for genome editing. Sci Rep. 2020;10:4619.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Farre C, Viezzi S, Wright A, Robin P, Lejal N, Manzano M, et al. Specific and sensitive detection of Influenza A virus using a biotin-coated nanoparticle enhanced immunomagnetic assay. Anal Bioanal Chem. 2022;414:265–76.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bi S, Chen M, Jia X, Dong Y. A hot-spot-active magnetic graphene oxide substrate for microRNA detection based on cascaded chemiluminescence resonance energy transfer. Nanoscale. 2015;7:3745–53.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published.