Cross-species transcriptomic signatures identify mechanisms related to species sensitivity and common responses to nanomaterials

[ad_1]

  • Klaper, R. D. The known and unknown about the environmental safety of nanomaterials in commerce. Small 16, 2000690 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Klaper, R., Arndt, D., Bozich, J. & Dominguez, G. Molecular interactions of nanomaterials and organisms: defining biomarkers for toxicity and high-throughput screening using traditional and next-generation sequencing approaches. Analyst 139, 882–895 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Bondarenko, O. et al. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch. Toxicol. 87, 1181–1200 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Hou, J., Zhou, Y., Wang, C., Li, S. & Wang, X. Toxic effects and molecular mechanism of different types of silver nanoparticles to the aquatic crustacean Daphnia magna. Environ. Sci. Technol. 51, 12868–12878 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Choi, J. S. & Park, J. W. Molecular characterization and toxicological effects of citrate-coated silver nanoparticles in a terrestrial invertebrate, the earthworm (Eisenia fetida). Mol. Cell. Toxicol. 11, 423–431 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Scherer, C., Brennholt, N., Reifferscheid, G. & Wagner, M. Feeding type and development drive the ingestion of microplastics by freshwater invertebrates. Sci. Rep. https://doi.org/10.1038/s41598-017-17191-7 (2017).

  • Rist, S., Baun, A. & Hartmann, N. B. Ingestion of micro- and nanoplastics in Daphnia magna – quantification of body burdens and assessment of feeding rates and reproduction. Environ. Pollut. https://doi.org/10.1016/j.envpol.2017.05.048 (2017).

  • Spence, R., Gerlach, G., Lawrence, C. & Smith, C. The behaviour and ecology of the zebrafish, Danio rerio. Biol. Rev. Camb. Philos. Soc. 83, 13–34 (2008).

    Article 

    Google Scholar
     

  • Nath, B. B. Extracellular hemoglobin and environmental stress tolerance in Chironomus larvae. J. Limnol. 77, 104–112 (2018).


    Google Scholar
     

  • Bozich, J., Hang, M., Hamers, R. & Klaper, R. Core chemistry influences the toxicity of multicomponent metal oxide nanomaterials, lithium nickel manganese cobalt oxide, and lithium cobalt oxide to Daphnia magna. Environ. Toxicol. Chem. 36, 2493–2502 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Niemuth, N. J. et al. Next-generation complex metal oxide nanomaterials negatively impact growth and development in the benthic invertebrate Chironomus riparius upon settling. Environ. Sci. Technol. 53, 3860–3870 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Burkard, M., Betz, A., Schirmer, K. & Zupanic, A. Common gene expression patterns in environmental model organisms exposed to engineered nanomaterials: a meta-analysis. Environ. Sci. Technol. 54, 335–344 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Faria, M. et al. Minimum information reporting in bio-nano experimental literature. Nat. Nanotechnol. 13, 777–785 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Wang, X. et al. Improving cyclic stability of lithium cobalt oxide based lithium ion battery at high voltage by using trimethylboroxine as an electrolyte additive. Electrochim. Acta 173, 804–811 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Hamers, R. J. Nanomaterials and global sustainability. Acc. Chem. Res. https://doi.org/10.1021/acs.accounts.6b00634 (2017).

  • McCoole, M. D., Baer, K. N. & Christie, A. E. Histaminergic signaling in the central nervous system of Daphnia and a role for it in the control of phototactic behavior. J. Exp. Biol. 214, 1773–1782 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Baggelaar, M. P., Maccarrone, M. & van der Stelt, M. 2-Arachidonoylglycerol: a signaling lipid with manifold actions in the brain. Prog. Lipid Res. 71, 1–17 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Jeong, T.-Y. et al. Effect of β-adrenergic receptor agents on cardiac structure and function and whole-body gene expression in Daphnia magna. Environ. Pollut. https://doi.org/10.1016/j.envpol.2018.06.026 (2018).

  • Margiotta-Casaluci, L., Owen, S. F., Rand-Weaver, M. & Winter, M. J. Testing the translational power of the zebrafish: an inter-species analysis of responses to cardiovascular drugs. Front. Pharmacol. 10, 893 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Mendoza, R. P. & Brown, J. M. Engineered nanomaterials and oxidative stress: current understanding and future challenges. Curr. Opin. Toxicol. 13, 74–80 (2019).

    Article 

    Google Scholar
     

  • Abdelhalim, M. A. K., Qaid, H. A., Al-Mohy, Y. H. & Ghannam, M. M. The protective roles of vitamin E and α-lipoic acid against nephrotoxicity, lipid peroxidation, and inflammatory damage induced by gold nanoparticles. Int. J. Nanomed. 15, 729–734 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Ha, M. H. & Choi, J. Effects of environmental contaminants on hemoglobin gene expression in Daphnia magna: a potential biomarker for freshwater quality monitoring. Arch. Environ. Contamin. Toxicol. 57, 330–337 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Prühs, R., Beermann, A. & Schröder, R. The roles of the Wnt-antagonists Axin and Lrp4 during embryogenesis of the red flour beetle Tribolium castaneum. J. Dev. Biol. 5, 10 (2017).

    Article 

    Google Scholar
     

  • Liang, J. et al. The functions and mechanisms of prefoldin complex and prefoldin-subunits. Cell Biosci. https://doi.org/10.1186/s13578-020-00446-8 (2020).

  • Serra, A. et al. INSIdE NANO: a systems biology framework to contextualize the mechanism-of-action of engineered nanomaterials. Sci. Rep. 9, 179 (2019).

    Article 

    Google Scholar
     

  • Newman, M., Ebrahimie, E. & Lardelli, M. Using the zebrafish model for Alzheimer’s disease research. Front. Genet. 5, 189 (2014).


    Google Scholar
     

  • Minegishi, Y., Nakaya, N. & Tomarev, S. I. Mutation in the cebrafish cct2 gene leads to abnormalities of cell cycle and cell death in the retina: a model of CCT2-related Leber congenital amaurosis. Invest. Ophthalmol. Vis. Sci. 59, 995–1004 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Willardson, B. M. & Howlett, A. C. Function of phosducin-like proteins in G protein signaling and chaperone-assisted protein folding. Cell. Signal. 19, 2417–2427 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Wu, D., Ma, Y., Cao, Y. & Zhang, T. Mitochondrial toxicity of nanomaterials. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.134994 (2019).

  • Nel, A. Toxic potential of materials. Science 311, 622–627 (2007).

    Article 

    Google Scholar
     

  • Brohi, R. D. et al. Toxicity of nanoparticles on the reproductive system in animal models: a review. Front. Pharmacol. 8, 606 (2017).

    Article 

    Google Scholar
     

  • Yan, N., Tang, B. Z. & Wang, W.-X. In vivo bioimaging of silver nanoparticle dissolution in the gut environment of zooplankton. ACS Nano https://doi.org/10.1021/acsnano.8b06003 (2018).

  • Adam, N., Leroux, F., Knapen, D., Bals, S. & Blust, R. The uptake of ZnO and CuO nanoparticles in the water-flea Daphnia magna under acute exposure scenarios. Environ. Pollut. 194, 130–137 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Lorenz, C. S. et al. Nano-sized Al2O3 reduces acute toxic effects of thiacloprid on the non-biting midge Chironomus riparius. PLoS One 12, e0176356 (2017).

    Article 

    Google Scholar
     

  • Frouz, J., Lobinske, R. J., Yaqub, A. & Ali, A. Larval gut pH profile in pestiferous Chironomus crassicaudatus and Glyptotendipes paripes (Chironomidae: Diptera) in reference to the toxicity potential of Bacillus thuringiensis serovar israelensis. J. Am. Mosq. Control Assoc. 23, 355–358 (2007).

    Article 

    Google Scholar
     

  • van Pomeren, M., Brun, N. R., Peijnenburg, W. J. G. M. & Vijver, M. G. Exploring uptake and biodistribution of polystyrene (nano)particles in zebrafish embryos at different developmental stages. Aquat. Toxicol. 190, 40–45 (2017).

    Article 

    Google Scholar
     

  • Laudadio, E. D., Bennett, J. W., Green, C. M., Mason, S. E. & Hamers, R. J. Impact of phosphate adsorption on complex cobalt oxide nanoparticle dispersibility in aqueous media. Environ. Sci. Technol. 52, 30 (2018).

    Article 

    Google Scholar
     

  • Niemuth, N. J. et al. Protein Fe–S centers as a molecular target of toxicity of a complex transition metal oxide nanomaterial with downstream impacts on metabolism and growth. Environ. Sci. Technol. 54, 15257–15266 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Smith, M. & Lazorchak, J. A reformulated, reconstituted water for testing the freshwater amphipod, Hyalella azteca. Environ. Toxicol. Chem. 16, 1229–1233 (1997).

    CAS 
    Article 

    Google Scholar
     

  • Andrews, S. FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article 

    Google Scholar
     

  • Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. https://doi.org/10.1038/nbt.1883 (2011).

  • The UniProt Consortium, UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2019).

  • Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics https://doi.org/10.1186/1471-2105-10-421 (2009).

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article 

    Google Scholar
     

  • Schmidt, H. et al. A high-quality genome assembly from short and long reads for the non-biting midge Chironomus riparius (Diptera). G3 (Bethesda) https://doi.org/10.1534/g3.119.400710 (2020).

  • Rohart, F., Gautier, B., Singh, A. & Lê Cao, K.-A. mixOmics: an R package for ’omics feature selection and multiple data integration. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1005752 (2017).

  • Chiesa, M., Colombo, G. I. & Piacentini, L. DaMiRseq—an R/Bioconductor package for data mining of RNA-Seq data: normalization, feature selection and classification. Bioinformatics 34, 1416–1418 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Mi, H. et al. Protocol Update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat. Protoc. 14, 703–721 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Raudvere, U. et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47, 191–198 (2019).

    Article 

    Google Scholar
     

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published.