Chemical-to-mechanical molecular computation using DNA-based motors with onboard logic

[ad_1]

  • Wadhams, G. H. & Armitage, J. P. Making sense of it all: bacterial chemotaxis. Nat. Rev. Mol. Cell Biol. 5, 1024–1037 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Srinivas, N. et al. On the biophysics and kinetics of toehold-mediated DNA strand displacement. Nucleic Acids Res. 41, 10641–10658 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Genot, A. J., Zhang, D. Y., Bath, J. & Turberfield, A. J. Remote toehold: a mechanism for flexible control of DNA hybridization kinetics. J. Am. Chem. Soc. 133, 2177–2182 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Yurke, B., Turberfield, A. J., Mills, A. P., Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103–113 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Dirks, R. M. & Pierce, N. A. Triggered amplification by hybridization chain reaction. Proc. Natl Acad. Sci. USA 101, 15275–15278 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Augspurger, E. E., Rana, M. & Yigit, M. V. Chemical and biological sensing using hybridization chain reaction. ACS Sens. 3, 878–902 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Ge, Z. et al. Hybridization chain reaction amplification of microRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor. Anal. Chem. 86, 2124–2130 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Bi, S., Chen, M., Jia, X., Dong, Y. & Wang, Z. Hyperbranched hybridization chain reaction for triggered signal amplification and concatenated logic circuits. Angew. Chem. Int. Ed. 54, 8144–8148 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Qian, L. & Winfree, E. A simple DNA gate motif for synthesizing large-scale circuits. J. R. Soc. Interface 8, 1281–1297 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Qian, L. & Winfree, E. Scaling up digital circuit computation with DNA strand displacement cascades. Science 332, 1196–1201 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Song, X., Eshra, A., Dwyer, C. & Reif, J. Renewable DNA seesaw logic circuits enabled by photoregulation of toehold-mediated strand displacement. RSC Adv. 7, 28130–28144 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Benenson, Y. et al. Programmable and autonomous computing machine made of biomolecules. Nature 414, 430–434 (2001).

    CAS 
    Article 

    Google Scholar
     

  • Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Thubagere, A. J. et al. A cargo-sorting DNA robot. Science 357, eaan6558 (2017).

    Article 

    Google Scholar
     

  • Cherry, K. M. & Qian, L. Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks. Nature 559, 370–376 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Zhou, C., Geng, H., Wang, P. & Guo, C. Programmable DNA nanoindicator‐based platform for large‐scale square root logic biocomputing. Small 15, 1903489 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Benenson, Y. Biomolecular computing systems: principles, progress and potential. Nat. Rev. Genet. 13, 455–468 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Wang, F. et al. Implementing digital computing with DNA-based switching circuits. Nat. Commun. 11, 121 (2020).

    Article 

    Google Scholar
     

  • Wang, K. et al. Autonomous DNA nanomachine based on cascade amplification of strand displacement and DNA walker for detection of multiple DNAs. Biosens. Bioelectron. 105, 159–165 (2018).

    CAS 
    Article 

    Google Scholar
     

  • You, M., Zhu, G., Chen, T., Donovan, M. J. & Tan, W. Programmable and multiparameter DNA-based logic platform for cancer recognition and targeted therapy. J. Am. Chem. Soc. 137, 667–674 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Zhu, J., Zhang, L., Zhou, Z., Dong, S. & Wang, E. Aptamer-based sensing platform using three-way DNA junction-driven strand displacement and its application in DNA logic circuit. Anal. Chem. 86, 312–316 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Chen, Y. et al. A DNA logic gate based on strand displacement reaction and rolling circle amplification, responding to multiple low-abundance DNA fragment input signals, and its application in detecting miRNAs. Chem. Commun. 51, 6980–6983 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Song, T. et al. Fast and compact DNA logic circuits based on single-stranded gates using strand-displacing polymerase. Nat. Nanotechnol. 14, 1075–1081 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Shah, S. et al. Using strand displacing polymerase to program chemical reaction networks. J. Am. Chem. Soc. 21, 9587–9593 (2020).


    Google Scholar
     

  • Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Kang, H. et al. DNA dynamics and computation based on toehold-free strand displacement. Nat. Commun. 12, 4994 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Wang, D. et al. Molecular logic gates on DNA origami nanostructures for microRNA diagnostics. Anal. Chem. 86, 1932–1936 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Yehl, K. et al. High-speed DNA-based rolling motors powered by RNAseH. Nat. Nanotechnol. 11, 184–190 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Bazrafshan, A. et al. Tunable DNA origami motors translocate ballistically over μm distances at nm/s speeds. Angew. Chem. Int. Ed. 59, 9514–9521 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Credi, A., Balzani, V., Langford, S. J. & Stoddart, J. F. Logic operations at the molecular level. An XOR gate based on a molecular machine. J. Am. Chem. Soc. 119, 2679–2681 (1997).

    CAS 
    Article 

    Google Scholar
     

  • Hu, L., Lu, C.-H. & Willner, I. Switchable catalytic DNA catenanes. Nano Lett. 15, 2099–2103 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Blanchard, A. T. et al. Highly polyvalent DNA motors generate 100+ pN of force via autochemophoresis. Nano Lett. 19, 6977–6986 (2019).

    CAS 
    Article 

    Google Scholar
     

  • McKinnon, K. M. Flow cytometry: an overview. Curr. Protoc. Immunol. 120, 5.1.1–5.1.11 (2018).


    Google Scholar
     

  • Chatterjee, G., Dalchau, N., Muscat, R. A., Phillips, A. & Seelig, G. A spatially localized architecture for fast and modular DNA computing. Nat. Nanotechnol. 12, 920–927 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Vashist, S. K., Mudanyali, O., Schneider, E. M., Zengerle, R. & Ozcan, A. Cellphone-based devices for bioanalytical sciences. Anal. Bioanal. Chem. 406, 3263–3277 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Ghonge, T. et al. Smartphone-imaged microfluidic biochip for measuring CD64 expression from whole blood. Analyst 144, 3925–3935 (2019).

    CAS 
    Article 

    Google Scholar
     

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published.