Bridging nano- and microscale X-ray tomography for battery research by leveraging artificial intelligence

[ad_1]

  • Seeram, E. Computed tomography: a technical review. Radiol. Technol. 89, 279CT–302CT (2018).


    Google Scholar
     

  • Pietsch, P. & Wood, V. X-ray tomography for lithium ion battery research: a practical guide. Annu. Rev. Mater. Res. 47, 451–479 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Extend the Limits of Your Exploration: ZEISS Xradia 610 and 620 Versa (ZEISS, accessed 10 December 2020); https://asset-downloads.zeiss.com/catalogs/download/mic/8fb6e06e-de4e-46dc-a9c9-883396ca1628/EN_product-information_610-620-Versa_rel1-3.pdf

  • Röntgen, W. C. On a new kind of rays. Science 3, 227–231 (1896).

    Article 

    Google Scholar
     

  • Knutsson, F. Röntgen and the Nobel Prize: with notes from his correspondence with Svante Arrhenius. Acta Radiol. Diagn. 8, 449–460 (1969).

    CAS 
    Article 

    Google Scholar
     

  • Radon, J. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Akad. Wiss. 69, 262–277 (1917).


    Google Scholar
     

  • Rubin, G. D. Computed tomography: revolutionizing the practice of medicine for 40 years. Radiology 273, S45–S74 (2014).

    Article 

    Google Scholar
     

  • Christoph, R. & Neumann, H. J. X-ray Tomography in Industrial Metrology: Precise, Economical and Universal (Süddeutscher, 2011).

  • Villarraga-Gómez, H., Herazo, E. L. & Smith, S. T. X-ray computed tomography: from medical imaging to dimensional metrology. Precis. Eng. 60, 544–569 (2019).

    Article 

    Google Scholar
     

  • Heenan, T. M. M., Tan, C., Hack, J., Brett, D. J. L. & Shearing, P. R. Developments in X-ray tomography characterization for electrochemical devices. Mater. Today 31, 69–85 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Zenyuk, I. V. Bridging X-ray computed tomography and computational modeling for electrochemical energy-conversion and -storage. Curr. Opin. Electrochem. 13, 78–85 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Gayon-Lombardo, A., Mosser, L., Brandon, N. P. & Cooper, S. J. Pores for thought: generative adversarial networks for stochastic reconstruction of 3D multi-phase electrode microstructures with periodic boundaries. npj Comput. Mater. 6, 82 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Petrich, L. et al. Crack detection in lithium-ion cells using machine learning. Comput. Mater. Sci. 136, 297–305 (2017).

    Article 

    Google Scholar
     

  • Jiang, Z. et al. Machine-learning-revealed statistics of the particle–carbon/binder detachment in lithium-ion battery cathodes. Nat. Commun. 11, 2310 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Chiro, G. D. & Brooks, R. A. The 1979 Nobel Prize in Physiology or Medicine. J. Comput. Assist. Tomogr. 4, 241–245 (1980).

    Article 

    Google Scholar
     

  • Beckmann, E. C. CT scanning the early days. Br. J. Radiol. 79, 5–8 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Hounsfield, G. N. Computerized transverse axial scanning (tomography): part 1. Description of system. Br. J. Radiol. 46, 1016–1022 (1973).

    CAS 
    Article 

    Google Scholar
     

  • Boerckel, J. D., Mason, D. E., McDermott, A. M. & Alsberg, E. Microcomputed tomography: approaches and applications in bioengineering. Stem Cell Res. Ther. 5, 144 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Krüger, P. et al. Synchrotron X-ray tomography for investigations of water distribution in polymer electrolyte membrane fuel cells. J. Power Sources 196, 5250–5255 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Fazeli, M. et al. Pore network modeling to explore the effects of compression on multiphase transport in polymer electrolyte membrane fuel cell gas diffusion layers. J. Power Sources 335, 162–171 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Alrwashdeh, S. S. et al. In operando quantification of three-dimensional water distribution in nanoporous carbon-based layers in polymer electrolyte membrane fuel cells. ACS Nano 11, 5944–5949 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Rawson, S. D., Maksimcuka, J., Withers, P. J. & Cartmell, S. H. X-ray computed tomography in life sciences. BMC Biol. 18, 21 (2020).

    Article 

    Google Scholar
     

  • Elliott, J. C. & Dover, S. D. X-ray microtomography. J. Microsc. 126, 211–213 (1982).

    CAS 
    Article 

    Google Scholar
     

  • Kress, J. W. & Feldkamp, L. A. “X-ray tomography applied to NDE of ceramics. In Proc. ASME 1983 International Gas Turbine Conference and Exhibit. Volume 5: Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; Process Industries V005T11A003 (American Society of Mechanical Engineers, 1983); https://doi.org/10.1115/83-GT-206

  • Stock, S. R. X-ray microtomography of materials. Int. Mater. Rev. 44, 141–164 (1999).

    CAS 
    Article 

    Google Scholar
     

  • Grodzins, L. Critical absorption tomography of small samples. Nucl. Instrum. Methods Phys. Res. 206, 547–552 (1983).

    CAS 
    Article 

    Google Scholar
     

  • Grodzins, L. Optimum energies for X-ray transmission tomography of small samples. Nucl. Instrum. Methods Phys. Res. 206, 541–545 (1983).

    CAS 
    Article 

    Google Scholar
     

  • Thompson, A. C. et al. Computed tomography using synchrotron radiation. Nucl. Instrum. Methods Phys. Res. 222, 319–323 (1984).

    Article 

    Google Scholar
     

  • Heiken, J. P., Brink, J. A. & Vannier, M. W. Spiral (helical) CT. Radiology 189, 647–656 (1993).

    CAS 
    Article 

    Google Scholar
     

  • Kalender, W. A., Seissler, W., Klotz, E. & Vock, P. in Classic Papers in Modern Diagnostic Radiology (eds Adrian, M. K. et al.) 1–68 (Springer, 2005).

  • Polacin, A., Kalender, W. A. & Marchal, G. Evaluation of section sensitivity profiles and image noise in spiral CT. Radiology 185, 29–35 (1992).

    CAS 
    Article 

    Google Scholar
     

  • Rubin, G. D., Leung, A. N., Robertson, V. J. & Stark, P. Thoracic spiral CT: influence of subsecond gantry rotation on image quality. Radiology 208, 771–776 (1998).

    CAS 
    Article 

    Google Scholar
     

  • Hu, H., He, H. D., Foley, W. D. & Fox, S. H. Four multidetector-row helical CT: image quality and volume coverage speed. Radiology 215, 55–62 (2000).

    CAS 
    Article 

    Google Scholar
     

  • Ballabriga, R. et al. Photon counting detectors for X-ray imaging with emphasis on CT. IEEE Trans. Radiat. Plasma Med. Sci. 5, 422–440 (2021).

    Article 

    Google Scholar
     

  • Kruth, J. P. et al. Computed tomography for dimensional metrology. CIRP Ann. 60, 821–842 (2011).

    Article 

    Google Scholar
     

  • Steinbock, L. & Dustmann, C.-H. Investigation of the inner structures of ZEBRA cells with a microtomograph. J. Electrochem. Soc. 148, A132 (2001).

    CAS 
    Article 

    Google Scholar
     

  • Sinha, P. K., Halleck, P. & Wang, C.-Y. Quantification of liquid water saturation in a PEM fuel cell diffusion medium using X-ray microtomography. Electrochem. Solid State Lett. 9, A344 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Shearing, P. R., Howard, L. E., Jørgensen, P. S., Brandon, N. P. & Harris, S. J. Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery. Electrochem. Commun. 12, 374–377 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Hutzenlaub, T., Thiele, S., Zengerle, R. & Ziegler, C. Three-dimensional reconstruction of a LiCoO2 Li-ion battery cathode. Electrochem. Solid State Lett. 15, A33 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Yan, B., Lim, C., Yin, L. & Zhu, L. Three dimensional simulation of galvanostatic discharge of LiCoO2 cathode based on X-ray nano-CT images. J. Electrochem. Soc. 159, A1604 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Ebner, M., Marone, F., Stampanoni, M. & Wood, V. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries. Science 342, 716–720 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Loveridge, M. et al. Looking deeper into the Galaxy (Note 7). Batteries 4, 3 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Carter, R., Huhman, B., Love, C. T. & Zenyuk, I. V. X-ray computed tomography comparison of individual and parallel assembled commercial lithium iron phosphate batteries at end of life after high rate cycling. J. Power Sources 381, 46–55 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Maire, E. & Withers, P. J. Quantitative X-ray tomography. Int. Mater. Rev. 59, 1–43 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Gelb, J., Finegan, D. P., Brett, D. J. L. & Shearing, P. R. Multi-scale 3D investigations of a commercial 18650 Li-ion battery with correlative electron- and X-ray microscopy. J. Power Sources 357, 77–86 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Finegan, D. P. et al. Investigating lithium-ion battery materials during overcharge-induced thermal runaway: an operando and multi-scale X-ray CT study. Phys. Chem. Chem. Phys. 18, 30912–30919 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Gelb, J. et al. Energy tunability in laboratory 3D nano-XRM. Microsc. Microanal. 25, 388–389 (2019).

    Article 

    Google Scholar
     

  • 2022 NSLS-II Strategic Plan (Brookhaven National Laboratory, 2021).

  • Chenevier, D. & Joly, A. ESRF: inside the extremely brilliant source upgrade. Synchrotron Radiat. News 31, 32–35 (2018).

    Article 

    Google Scholar
     

  • Rack, A. Hard X-ray imaging at ESRF: exploiting contrast and coherence with the new EBS storage ring. Synchrotron Radiat. News 33, 20–28 (2020).

    Article 

    Google Scholar
     

  • Meirer, F. et al. Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. J. Synchrotron Radiat. 18, 773–781 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Müller, S. et al. Multimodal nanoscale tomographic imaging for battery electrodes. Adv. Energy Mater. 10, 1904119 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Falch, K. V. et al. Zernike phase contrast in high-energy X-ray transmission microscopy based on refractive optics. Ultramicroscopy 184, 267–273 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Withers, P. J. X-ray nanotomography. Mater. Today 10, 26–34 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Yin, L. et al. High performance printed AgO–Zn rechargeable battery for flexible electronics. Joule 5, 228–248 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Pietsch, P. et al. Quantifying microstructural dynamics and electrochemical activity of graphite and silicon–graphite lithium ion battery anodes. Nat. Commun. 7, 12909 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Taiwo, O. O. et al. Microstructural degradation of silicon electrodes during lithiation observed via operando X-ray tomographic imaging. J. Power Sources 342, 904–912 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Gonzalez, J. et al. Three dimensional studies of particle failure in silicon based composite electrodes for lithium ion batteries. J. Power Sources 269, 334–343 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Vanpeene, V. et al. Dynamics of the morphological degradation of Si‐based anodes for Li‐ion batteries characterized by in situ synchrotron X‐ray tomography. Adv. Energy Mater. 9, 1803947 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gent, W. E. et al. Persistent state-of-charge heterogeneity in relaxed, partially charged Li1−xNi1/3Co1/3Mn1/3O2 secondary particles. Adv. Mater. 28, 6631–6638 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Holzner, C. et al. Zernike phase contrast in scanning microscopy with X-rays. Nat. Phys. 6, 883–887 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Komini Babu, S., Mohamed, A. I., Whitacre, J. F. & Litster, S. Multiple imaging mode X-ray computed tomography for distinguishing active and inactive phases in lithium-ion battery cathodes. J. Power Sources 283, 314–319 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Chen-Wiegart, Y. K., Liu, Z., Faber, K. T., Barnett, S. A. & Wang, J. 3D analysis of a LiCoO2–Li(Ni1/3Mn1/3Co1/3)O2 Li-ion battery positive electrode using X-ray nano-tomography. Electrochem. Commun. 28, 127–130 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Heenan, T. M. M. et al. Resolving Li‐ion battery electrode particles using rapid lab‐based X‐ray nano‐computed tomography for high‐throughput quantification. Adv. Sci. 7, 2000362 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Frisco, S., Kumar, A., Whitacre, J. F. & Litster, S. Understanding Li-ion battery anode degradation and pore morphological changes through nano-resolution X-ray computed tomography. J. Electrochem. Soc. 163, A2636–A2640 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Su, Z. et al. X-ray nanocomputed tomography in Zernike phase contrast for studying 3D morphology of Li–O2 battery electrode. ACS Appl. Energy Mater. 3, 4093–4102 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Ngandjong, A. C. et al. Investigating electrode calendering and its impact on electrochemical performance by means of a new discrete element method model: towards a digital twin of Li-Ion battery manufacturing. J. Power Sources 485, 229320 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Torayev, A. et al. Stochasticity of pores interconnectivity in Li–O2 batteries and its impact on the variations in electrochemical performance. J. Phys. Chem. Lett. 9, 791–797 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Torayev, A., Magusin, P. C. M. M., Grey, C. P., Merlet, C. & Franco, A. A. Importance of incorporating explicit 3D-resolved electrode mesostructures in Li–O2 battery models. ACS Appl. Energy Mater. 1, 6433–6441 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ding, N. et al. Influence of carbon pore size on the discharge capacity of Li–O 2 batteries. J. Mater. Chem. A 2, 12433–12441 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Epstein, N. On tortuosity and the tortuosity factor in flow and diffusion through porous media. Chem. Eng. Sci. 44, 777–779 (1989).

    CAS 
    Article 

    Google Scholar
     

  • Tjaden, B., Brett, D. J. L. & Shearing, P. R. Tortuosity in electrochemical devices: a review of calculation approaches. Int. Mater. Rev. 63, 47–67 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Lu, X. et al. 3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling. Nat. Commun. 11, 2079 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Usseglio-Viretta, F. L. E. et al. Quantitative relationships between pore tortuosity, pore topology, and solid particle morphology using a novel discrete particle size algorithm. J. Electrochem. Soc. 167, 100513 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Ebner, M., Chung, D.-W., García, R. E. & Wood, V. Tortuosity anisotropy in lithium-ion battery electrodes. Adv. Energy Mater. 4, 1301278 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Submicron X-ray Imaging: Maintain High Resolution Even at Large Working Distances: ZEISS Xradia Versa 510 (ZEISS, accessed 27 September 2020); https://asset-downloads.zeiss.com/catalogs/download/mic/59f564ec-a757-4f23-9607-b4ae6d91c05e/EN_product-info_Xradia-510-Versa_rel-1.2.pdf

  • Varslot, T., Kingston, A., Myers, G. & Sheppard, A. High-resolution helical cone-beam micro-CT with theoretically-exact reconstruction from experimental data. Med. Phys. 38, 5459–5476 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Li, T. et al. Three-dimensional reconstruction and analysis of all-solid Li-ion battery electrode using synchrotron transmission X-ray microscopy tomography. ACS Appl. Mater. Interfaces 10, 16927–16931 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Ghorbani Kashkooli, A. et al. Synchrotron X-ray nano computed tomography based simulation of stress evolution in LiMn2O4 electrodes. Electrochim. Acta 247, 1103–1116 (2017).

    CAS 
    Article 

    Google Scholar
     

  • ZEISS Xradia 810 Ultra—Nanoscale X-ray Imaging: Explore at the Speed of Science (ZEISS, accessed 10 December 2020); https://asset-downloads.zeiss.com/catalogs/download/mic/c5e5bd17-4f66-42df-a4b3-18ecd933024e/EN_product-info_Xradia-810-Ultra_rel3.0.pdf

  • Frisco, S. et al. Internal morphologies of cycled Li–metal electrodes investigated by nano-scale resolution X-ray computed tomography. ACS Appl. Mater. Interfaces 9, 18748–18757 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Yermukhambetova, A. et al. Exploring 3D microstructural evolution in Li–sulfur battery electrodes using in-situ X-ray tomography. Sci. Rep. 6, 35291 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Yufit, V. et al. Investigation of lithium-ion polymer battery cell failure using X-ray computed tomography. Electrochem. Commun. 13, 608–610 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Taiwo, O. O. et al. Investigating the evolving microstructure of lithium metal electrodes in 3D using X-ray computed tomography. Phys. Chem. Chem. Phys. 19, 22111–22120 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Ito, Y., Wei, X., Desai, D., Steingart, D. & Banerjee, S. An indicator of zinc morphology transition in flowing alkaline electrolyte. J. Power Sources 211, 119–128 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Ko, J. S. et al. Robust 3D Zn sponges enable high-power, energy-dense alkaline batteries. ACS Appl. Energy Mater. 2, 212–216 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Mitsch, T. et al. Preparation and characterization of Li-ion graphite anodes using synchrotron tomography. Materials 7, 4455–4472 (2014).

    Article 

    Google Scholar
     

  • Arlt, T., Schröder, D., Krewer, U. & Manke, I. In operando monitoring of the state of charge and species distribution in zinc air batteries using X-ray tomography and model-based simulations. Phys. Chem. Chem. Phys. 16, 22273–22280 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Yu, Y.-S. et al. Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography. Nat. Commun. 9, 921 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Tonin, G. et al. Operando investigation of the lithium/sulfur battery system by coupled X-ray absorption tomography and X-ray diffraction computed tomography. J. Power Sources 468, 228287 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Lewis, J. A. et al. Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography. Nat. Mater. 20, 503–510 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Wang, J., Chen-Wiegart, Y. K. & Wang, J. In situ three-dimensional synchrotron X-ray nanotomography of the (de)lithiation processes in tin anodes. Angew. Chem. Int. Ed. 53, 4460–4464 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Vanpeene, V. et al. Monitoring the morphological changes of Si-based electrodes by X-ray computed tomography: a 4D-multiscale approach. Nano Energy 74, 104848 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Christensen, M. K., Mathiesen, J. K., Simonsen, S. B. & Norby, P. Transformation and migration in secondary zinc–air batteries studied by in situ synchrotron X-ray diffraction and X-ray tomography. J. Mater. Chem. A 7, 6459–6466 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Choi, P., Parimalam, B. S., Su, L., Reeja-Jayan, B. & Litster, S. Operando particle-scale characterization of silicon anode degradation during cycling by ultrahigh-resolution X-ray microscopy and computed tomography. ACS Appl. Energy Mater. 4, 1657–1665 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Jervis, R. et al. In situ compression and X-ray computed tomography of flow battery electrodes. J. Energy Chem. 27, 1353–1361 (2018).

    Article 

    Google Scholar
     

  • Doux, J. et al. Stack pressure considerations for room‐temperature all‐solid‐state lithium metal batteries. Adv. Energy Mater. 10, 1903253 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Franke-lang, R., Arlt, T., Manke, I. & Kowal, J. X-ray tomography as a powerful method for zinc–air battery research. J. Power Sources 370, 45–51 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Tippens, J. et al. Visualizing chemomechanical degradation of a solid-state battery electrolyte. ACS Energy Lett. 4, 1475–1483 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Scharf, J. et al. Investigating degradation modes in Zn–AgO aqueous batteries with in situ X‐ray micro computed tomography. Adv. Energy Mater. https://doi.org/10.1002/aenm.202101327 (2021).

  • Lu, B. et al. Quantitatively designing porous copper current collectors for lithium metal anodes. ACS Appl. Energy Mater. 4, 6454–6465 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Flannery, B. P., Deckman, H. W., Roberge, W. G. & D’amico, K. L. Three-dimensional X-ray microtomography. Science 237, 1439–1444 (1987).

    CAS 
    Article 

    Google Scholar
     

  • Daemi, S. R. et al. 4D visualisation of in situ nano-compression of Li-ion cathode materials to mimic early stage calendering. Mater. Horiz. 6, 612–617 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Hubbell, J. H. & Seltzer, S. M. Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 keV to 20 meV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest (NIST, accessed 18 February 2021); https://www.osti.gov/biblio/76335

  • Usseglio-Viretta, F. L. E. et al. Resolving the discrepancy in tortuosity factor estimation for Li-ion battery electrodes through micro–macro modeling and experiment. J. Electrochem. Soc. 165, A3403–A3426 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Bailey, J. J. et al. Laser-preparation of geometrically optimised samples for X-ray nano-CT. J. Microsc. 267, 384–396 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Tan, C. et al. Evolution of electrochemical cell designs for in-situ and operando 3D characterization. Materials 11, 2157 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ho, A. S. et al. 3D detection of lithiation and lithium plating in graphite anodes during fast charging. ACS Nano 15, 10480–10487 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nelson, J. et al. Identifying and managing radiation damage during in situ transmission X-ray microscopy of Li-ion batteries. Proc. SPIE 8851, 88510B (2013).

    Article 

    Google Scholar
     

  • Borkiewicz, O. J., Wiaderek, K. M., Chupas, P. J. & Chapman, K. W. Best practices for operando battery experiments: influences of X-ray experiment design on observed electrochemical reactivity. J. Phys. Chem. Lett. 6, 2081–2085 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Kulkarni, D., Normile, S. J., Connolly, L. G. & Zenyuk, I. V. Development of low temperature fuel cell holders for operando X-ray micro and nano computed tomography to visualize water distribution. J. Phys. Energy 2, 044005 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Finegan, D. P. et al. Spatial dynamics of lithiation and lithium plating during high-rate operation of graphite electrodes. Energy Environ. Sci. 13, 2570–2584 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Pietsch, P., Hess, M., Ludwig, W., Eller, J. & Wood, V. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries. Sci. Rep. 6, 27994 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Finegan, D. P. et al. Spatially resolving lithiation in silicon–graphite composite electrodes via in situ high-energy X-ray diffraction computed tomography. Nano Lett. 19, 3811–3820 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Doyle, M., Fuller, T. F. & Newman, J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J. Electrochem. Soc. 140, 1526–1533 (1993).

    CAS 
    Article 

    Google Scholar
     

  • Newman, J. S. & Tobias, C. W. Theoretical analysis of current distribution in porous electrodes. J. Electrochem. Soc. 109, 1183 (1962).

    CAS 
    Article 

    Google Scholar
     

  • Landesfeind, J., Ebner, M., Eldiven, A., Wood, V. & Gasteiger, H. A. Tortuosity of battery electrodes: validation of impedance-derived values and critical comparison with 3D tomography. J. Electrochem. Soc. 165, A469–A476 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Trembacki, B. L. et al. Editors’ choice—mesoscale analysis of conductive binder domain morphology in lithium-ion battery electrodes. J. Electrochem. Soc. 165, E725–E736 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Duquesnoy, M., Lombardo, T., Chouchane, M., Primo, E. N. & Franco, A. A. Data-driven assessment of electrode calendering process by combining experimental results, in silico mesostructures generation and machine learning. J. Power Sources 480, 229103 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Chouchane, M., Rucci, A. & Franco, A. A. A versatile and efficient voxelization-based meshing algorithm of multiple phases. ACS Omega 4, 11141–11144 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Cooper, S. J., Bertei, A., Shearing, P. R., Kilner, J. A. & Brandon, N. P. TauFactor: an open-source application for calculating tortuosity factors from tomographic data. SoftwareX 5, 203–210 (2016).

    Article 

    Google Scholar
     

  • Westhoff, D. et al. Parametric stochastic 3D model for the microstructure of anodes in lithium-ion power cells. Comput. Mater. Sci. 126, 453–467 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Kashkooli, A. G. et al. Multiscale modeling of lithium-ion battery electrodes based on nano-scale X-ray computed tomography. J. Power Sources 307, 496–509 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Yan, B., Lim, C., Yin, L. & Zhu, L. Simulation of heat generation in a reconstructed LiCoO2 cathode during galvanostatic discharge. Electrochim. Acta 100, 171–179 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Ngandjong, A. C. et al. Multiscale simulation platform linking lithium ion battery electrode fabrication process with performance at the cell level. J. Phys. Chem. Lett. 8, 5966–5972 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Roberts, S. A., Brunini, V. E., Long, K. N. & Grillet, A. M. A framework for three-dimensional mesoscale modeling of anisotropic swelling and mechanical deformation in lithium-ion electrodes. J. Electrochem. Soc. 161, F3052–F3059 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Ferraro, M. E., Trembacki, B. L., Brunini, V. E., Noble, D. R. & Roberts, S. A. Electrode mesoscale as a collection of particles: coupled electrochemical and mechanical analysis of NMC cathodes. J. Electrochem. Soc. 167, 013543 (2020).

    Article 

    Google Scholar
     

  • Chouchane, M., Primo, E. N. & Franco, A. A. Mesoscale effects in the extraction of the solid-state lithium diffusion coefficient values of battery active materials: physical insights from 3D modeling. J. Phys. Chem. Lett. 11, 2775–2780 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Danner, T. et al. Thick electrodes for Li-ion batteries: a model based analysis. J. Power Sources 334, 191–201 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Chouchane, M. & Franco, A. A. Deconvoluting the impacts of the active material skeleton and the inactive phase morphology on the performance of lithium ion battery electrodes. Energy Storage Mater. 47, 649–655 (2022).

    Article 

    Google Scholar
     

  • Lim, C., Yan, B., Yin, L. & Zhu, L. Simulation of diffusion-induced stress using reconstructed electrodes particle structures generated by micro/nano-CT. Electrochim. Acta 75, 279–287 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Qiu, G. et al. 3-D pore-scale resolved model for coupled species/charge/fluid transport in a vanadium redox flow battery. Electrochim. Acta 64, 46–64 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, D. et al. The effect of wetting area in carbon paper electrode on the performance of vanadium redox flow batteries: a three-dimensional lattice Boltzmann study. Electrochim. Acta 283, 1806–1819 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Wang, M. et al. Numerical evaluation of the effect of mesopore microstructure for carbon electrode in flow battery. J. Power Sources 424, 27–34 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, D. et al. Understanding the role of the porous electrode microstructure in redox flow battery performance using an experimentally validated 3D pore-scale lattice Boltzmann model. J. Power Sources 447, 227249 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Harris, W. M. & Chiu, W. K. S. Determining the representative volume element size for three-dimensional microstructural material characterization. Part 1: predictive models. J. Power Sources 282, 552–561 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Harris, W. M. & Chiu, W. K. S. Determining the representative volume element size for three-dimensional microstructural material characterization. Part 2: application to experimental data. J. Power Sources 282, 622–629 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Roberts, S. A., Mendoza, H., Brunini, V. E. & Noble, D. R. A verified conformal decomposition finite element method for implicit, many-material geometries. J. Comput. Phys. 375, 352–367 (2018).

    Article 

    Google Scholar
     

  • Landstorfer, M., Prifling, B. & Schmidt, V. Mesh generation for periodic 3D microstructure models and computation of effective properties. J. Comput. Phys. 431, 110071 (2021).

    Article 

    Google Scholar
     

  • Chouchane, M. & Franco, A. A. An invitation to engage with computational modeling: user‐friendly tool for in silico battery component generation and meshing. Batter. Supercaps 4, 1451–1456 (2021).

    Article 

    Google Scholar
     

  • Chouchane, M., Rucci, A., Lombardo, T., Ngandjong, A. C. & Franco, A. A. Lithium ion battery electrodes predicted from manufacturing simulations: Assessing the impact of the carbon-binder spatial location on the electrochemical performance. J. Power Sources 444, 227285 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Lu, X. et al. Microstructural evolution of battery electrodes during calendering. Joule 4, 2746–2768 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Lombardo, T. et al. Accelerated optimization methods for force-field parametrization in battery electrode manufacturing modeling. Batteries Supercap. 3, 721–730 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Lombardo, T., Ngandjong, A. C., Belhcen, A. & Franco, A. A. Carbon-binder migration: a three-dimensional drying model for lithium-ion battery electrodes. Energy Storage Mater. 43, 337–347 (2021).

    Article 

    Google Scholar
     

  • Lombardo, T. et al. The ARTISTIC online calculator: exploring the impact of lithium‐ion battery electrode manufacturing parameters interactively through your browser. Batter. Supercaps 5, e202100324 (2022).


    Google Scholar
     

  • Burnett, T. L. et al. Correlative tomography. Sci. Rep. 4, 4711 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Slater, T. J. et al. Multiscale correlative tomography: an investigation of creep cavitation in 316 stainless steel. Sci. Adv. 7, 7332 (2017).

    CAS 

    Google Scholar
     

  • Apeleo Zubiri, B. et al. Correlative laboratory nano-CT and 360° electron tomography of macropore structures in hierarchical zeolites. Adv. Mater. Interfaces 8, 2001154 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Daemi, S. R. et al. Visualizing the carbon binder phase of battery electrodes in three dimensions. ACS Appl. Energy Mater. 1, 3702–3710 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Xu, H., Usseglio-Viretta, F., Kench, S., Cooper, S. J. & Finegan, D. P. Microstructure reconstruction of battery polymer separators by fusing 2D and 3D image data for transport property analysis. J. Power Sources 480, 229101 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Kench, S. & Cooper, S. J. Generating three-dimensional structures from a two-dimensional slice with generative adversarial network-based dimensionality expansion. Nat. Mach. Intell. 3, 299–305 (2021).

    Article 

    Google Scholar
     

  • Franco, A. A. Escape from flatland. Nat. Mach. Intell. 3, 277–278 (2021).

    Article 

    Google Scholar
     

  • De Carlo, F. et al. TomoBank: a tomographic data repository for computational X-ray science. Meas. Sci. Technol. 29, 034004 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Quinn, A. et al. Electron backscatter diffraction for investigating lithium-ion electrode particle architectures. Cell Rep. Phys. Sci. 1, 100137 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Urban, A., Seo, D.-H. & Ceder, G. Computational understanding of Li-ion batteries. npj Comput. Mater. 2, 16002 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Xu, H. et al. Guiding the design of heterogeneous electrode microstructures for Li-ion batteries: microscopic imaging, predictive modeling, and machine learning. Adv. Energy Mater. 11, 2003908 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Franco, A. A. et al. Entering the augmented era: immersive and interactive virtual reality for battery education and research. Batter. Supercaps 3, 1147–1164 (2020).

    Article 

    Google Scholar
     

  • Andrade, V. D. et al. Fast X-ray nanotomography with sub-10 nm resolution as a powerful imaging tool for nanotechnology and energy storage applications. Adv. Mater. 33, 2008653 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Oikonomou, C. M., Chang, Y.-W. & Jensen, G. J. A new view into prokaryotic cell biology from electron cryotomography. Nat. Rev. Microbiol. 14, 205–220 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Lee, J. Z. et al. Cryogenic focused ion beam characterization of lithium metal anodes. ACS Energy Lett. 4, 489–493 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Seidman, D. N. Three-dimensional atom-probe tomography: advances and applications. Annu. Rev. Mater. Res. 37, 127–158 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Borgia, G. C., Camaiti, M., Cerri, F., Fantazzini, P. & Piacenti, F. Study of water penetration in rock materials by nuclear magnetic resonance tomography: hydrophobic treatment effects. J. Cultural Herit. 1, 127–132 (2000).

    Article 

    Google Scholar
     

  • Walther, F. et al. Visualization of the interfacial decomposition of composite cathodes in argyrodite-based all-solid-state batteries using time-of-flight secondary-ion mass spectrometry. Chem. Mater. 31, 3745–3755 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Schlüter, S., Sheppard, A., Brown, K. & Wildenschild, D. Image processing of multiphase images obtained via X-ray microtomography: a review. Water Resour. Res. 50, 3615–3639 (2014).

    Article 

    Google Scholar
     

  • Carvalho, L. E., Sobieranski, A. C. & von Wangenheim, A. 3D segmentation algorithms for computerized tomographic imaging: a systematic literature review. J. Digit. Imaging 31, 799–850 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Arganda-Carreras, I. et al. Trainable WEKA segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics 33, 2424–2426 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Satjaritanun, P. et al. Observation of preferential pathways for oxygen removal through porous transport layers of polymer electrolyte water electrolyzers. iScience 23, 101783 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Serra, J. Image Analysis and Mathematical Morphology Vol. I (Academic Press, 1982).

  • Ghani, M. U. et al. Noise power characteristics of a micro-computed tomography system. J. Comput. Assist. Tomogr. 41, 82–89 (2017).

    Article 

    Google Scholar
     

  • Orhan, K. Micro-Computed Tomography (Micro-CT) in Medicine and Engineering (Springer International, 2020).

  • Barrett, J. F. & Keat, N. Artifacts in CT: recognition and avoidance. RadioGraphics 24, 1679–1691 (2004).

    Article 

    Google Scholar
     

  • Iassonov, P. & Tuller, M. Application of segmentation for correction of intensity bias in X-ray computed tomography images. Vadose Zone J. 9, 187 (2010).

    Article 

    Google Scholar
     

  • Tuller, M., Kulkarni, R. & Fink, W. in Soil–Water–Root Processes: Advances in Tomography and Imaging (eds Anderson, S. H. & Hopmans, J. W.) 157–182 (Soil Science Society of America, 2015).

  • Perona, P. & Malik, J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990).

    Article 

    Google Scholar
     

  • Russ, J. C., Matey, J. R., Mallinckrodt, A. J. & McKay, S. The image processing handbook. Microsc. Microanal. 17, 843 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Gonzalez, R. C., Woods, R. E. & Eddins, S. Image segmentation. Digit. Image Process. 2, 331–390 (2002).


    Google Scholar
     

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published.