Applying lessons learned from nanomedicines to understand rare hypersensitivity reactions to mRNA-based SARS-CoV-2 vaccines

[ad_1]

  • Bardenheier, B. H., Duderstadt, S. K., Engler, R. J. & McNeil, M. M. Adverse events following pandemic influenza A (H1N1) 2009 monovalent and seasonal influenza vaccinations during the 2009–2010 season in the active component US military and civilians aged 17–44 years reported to the Vaccine Adverse Event Reporting System. Vaccine 34, 4406–4414 (2016).


    Google Scholar
     

  • Halsey, N. A. et al. Algorithm to assess causality after individual adverse events following immunizations. Vaccine 30, 5791–5798 (2012).


    Google Scholar
     

  • Halsey, N. A. et al. Immediate hypersensitivity reactions following monovalent 2009 pandemic influenza A (H1N1) vaccines: reports to VAERS. Vaccine 31, 6107–6112 (2013).


    Google Scholar
     

  • Johann-Liang, R., Josephs, S. & Dreskin, S. C. Analysis of anaphylaxis cases after vaccination: 10-year review from the National Vaccine Injury Compensation Program. Ann. Allergy Asthma Immunol. 106, 440–443 (2011).


    Google Scholar
     

  • Zheng, W. & Dreskin, S. C. Thimerosal in influenza vaccine: an immediate hypersensitivity reaction. Ann. Allergy Asthma Immunol. 99, 574–575 (2007).


    Google Scholar
     

  • Vaccine Adverse Event Reporting System (CDC, accessed 31 December 2021); https://vaers.hhs.gov/

  • Banerji, A. et al. mRNA vaccines to prevent COVID-19 disease and reported allergic reactions: current evidence and suggested approach. J. Allergy Clin. Immunol. Pract. 9, 1423–1437 (2021).


    Google Scholar
     

  • Summary of the Meetings of the Monitoring Committee on the Vaccination Campaign (Israel Ministry of Health, accessed 8 August 2021); https://govextra.gov.il/ministry-of-health/covid19-vaccine/covid-19-vaccine-efficacy-safety-follow-up-committee/

  • McMahon, D. E. et al. Cutaneous reactions reported after Moderna and Pfizer COVID-19 vaccination: a registry-based study of 414 cases. J. Am. Acad. Dermatol. 85, 46–55 (2021).

    CAS 

    Google Scholar
     

  • Castells, M. C. & Phillips, E. J. Maintaining safety with SARS-CoV-2 vaccines. N. Engl. J. Med. 384, 643–649 (2021).

    CAS 

    Google Scholar
     

  • Dagan, N. et al. BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. N. Engl. J. Med. 384, 1412–1423 (2021).

    CAS 

    Google Scholar
     

  • Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    CAS 

    Google Scholar
     

  • Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).

    CAS 

    Google Scholar
     

  • Coronavirus (COVID-19) Vaccinations (Our World in Data, accessed 29 January 2022); https://ourworldindata.org/covid-vaccinations

  • Liotti, L. et al. COVID-19 vaccines in children with cow’s milk and food allergies. Nutrients 13, 2637 (2021).

    CAS 

    Google Scholar
     

  • Seneff, S. & Nigh, G. Worse than the disease? Reviewing some possible unintended consequences of the mRNA vaccines against COVID-19. Int. J. Vaccine Theory Pract. Res. 2, 402–443 (2021).


    Google Scholar
     

  • Interim Clinical Considerations for Use of COVID-19 Vaccines Currently Approved or Authorized in the United States (CDC, accessed 10 February 2021); https://www.cdc.gov/vaccines/covid-19/info-by-product/clinical-considerations.html

  • Szebeni, J., Simberg, D., González-Fernández, Á., Barenholz, Y. & Dobrovolskaia, M. A. Roadmap and strategy for overcoming infusion reactions to nanomedicines. Nat. Nanotechnol. 13, 1100–1108 (2018).

    CAS 

    Google Scholar
     

  • Gold, M. S. et al. Immunization stress-related response—redefining immunization anxiety-related reaction as an adverse event following immunization. Vaccine 38, 3015–3020 (2020).


    Google Scholar
     

  • Pfizer-BioNTech COVID-19 Vaccine Emergency Use Authorization Review Memorandum (USFDA, 2020); https://www.fda.gov/media/144416/download

  • FDA Briefing Document Moderna COVID-19 Vaccine (USFDA, 2020); https://www.fda.gov/media/144434/download

  • Ellis R. Pfizer: vaccine shown 100% effective in kids 12–15 WebMD (31 March 2021); https://www.webmd.com/vaccines/covid-19-vaccine/news/20210331/pfizer-vaccine-effectiveness-kids-twelve-to-fifteen

  • Yanez Arteta, M. et al. Successful reprogramming of cellular protein production through mRNA delivered by functionalized lipid nanoparticles. Proc. Natl Acad. Sci. USA 115, E3351–E3360 (2018).


    Google Scholar
     

  • Mui, B. L. et al. Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles. Mol. Ther. Nucleic Acids 2, E139 (2013).

    CAS 

    Google Scholar
     

  • Viger-Gravel, J. et al. Structure of lipid nanoparticles containing siRNA or mRNA by dynamic nuclear polarization-enhanced NMR spectroscopy. J. Phys. Chem. B 122, 2073–2081 (2018).

    CAS 

    Google Scholar
     

  • Pardi, N. et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J. Control. Release 217, 345–351 (2015). Establishes the proof of principles for the LNP-mRNA delivery in vivo.

    CAS 

    Google Scholar
     

  • Liang, F. et al. Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques. Mol Ther 25, 2635–2647 (2017).

    CAS 

    Google Scholar
     

  • Hassett, K. J. et al. Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines. Mol. Ther. Nucleic Acids 15, 1–11 (2019).

    CAS 

    Google Scholar
     

  • Lindsay, K. E. et al. Visualization of early events in mRNA vaccine delivery in non-human primates via PET-CT and near-infrared imaging. Nat. Biomed. Eng. 3, 371–380 (2019). Provides insights into the fate of mRNA vaccine after the immunization.

    CAS 

    Google Scholar
     

  • Sabnis, S. et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol. Ther. 26, 1509–1519 (2018).

    CAS 

    Google Scholar
     

  • Sahin, U. et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature 586, 594–599 (2020). Provides the proof of efficacy of Pfizer/Biontech vaccine in humans.

    CAS 

    Google Scholar
     

  • Anderson, E. J. et al. Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N. Engl. J. Med. 383, 2427–2438 (2020). Reports the results of clinical trials accessing toxicity and efficacy of COVID-19 632 vaccine in humans.

    CAS 

    Google Scholar
     

  • Karikó, K. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16, 1833–1840 (2008).


    Google Scholar
     

  • Lokugamage, M. P. et al. Mild innate immune activation overrides efficient nanoparticle-mediated RNA delivery. Adv. Mater. 32, e1904905 (2020).


    Google Scholar
     

  • Pollard, C. et al. Type I IFN counteracts the induction of antigen-specific immune responses by lipid-based delivery of mRNA vaccines. Mol. Ther. 21, 251–259 (2013).

    CAS 

    Google Scholar
     

  • Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines—a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).

    CAS 

    Google Scholar
     

  • Coombs R. R. A. & Gell P. G. H. in Clinical Aspects of Immunology 2nd edn (eds Gell P. G. H. & Coombs R. R. A.) 575–596 (Blackwell Scientific, 1968).

  • Simons, F. E. et al. 2012 Update: World Allergy Organization Guidelines for the assessment and management of anaphylaxis. Curr. Opin. Allergy Clin. Immunol. 12, 389–399 (2012).


    Google Scholar
     

  • Szebeni, J. Complement activation-related pseudoallergy: A stress reaction in blood triggered by nanomedicines and biologicals. Mol. Immunol. 61, 163–173 (2014). Provides a comprehensive literature review of complement-mediated infusion reactions to nanomedicines.

    CAS 

    Google Scholar
     

  • del Balzo, U., Polley, M. J. & Levi, R. Cardiac anaphylaxis. Complement activation as an amplification system. Circ. Res. 65, 847–857 (1989).


    Google Scholar
     

  • Castells, M. Diagnosis and management of anaphylaxis in precision medicine. J. Allergy Clin. Immunol. 140, 321–333 (2017).


    Google Scholar
     

  • Sloane, D. et al. Safety, costs, and efficacy of rapid drug desensitizations to chemotherapy and monoclonal antibodies. J. Allergy Clin. Immunol. Pract. 4, 497–504 (2016).


    Google Scholar
     

  • Common Terminology Criteria for Adverse Events (CTCAE) (US Department of Health and Social Services, 2017); https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm

  • Jacubovic, B. D., Sanchez-Sanchez, S., Hamadi, S., Lynch, D. & Castells, M. Interleukin-6: A novel biomarker for monoclonal antibody and chemotherapy-associated hypersensitivity confirms a cytokine release syndrome phenotype-endotype association. Allergy 76, 1571–1573 (2021).


    Google Scholar
     

  • Blumenthal, K. G. et al. Delayed large local reactions to mRNA-1273 vaccine against SARS-CoV-2. N. Engl. J. Med. 384, 1273–1277 (2021).


    Google Scholar
     

  • Garvey, L. H. & Nasser, S. Anaphylaxis to the first COVID-19 vaccine: is polyethylene glycol (PEG) the culprit? Br. J. Anaesth. 126, e106–e108 (2021).

    CAS 

    Google Scholar
     

  • Moghimi, S. M. Allergic reactions and anaphylaxis to LNP-based COVID-19 vaccines. Mol. Ther. 29, 898–900 (2021).

    CAS 

    Google Scholar
     

  • Chen, B. M. et al. Measurement of pre-existing IgG and IgM antibodies against polyethylene glycol in healthy individuals. Anal Chem 88, 10661–10666 (2016).

    CAS 

    Google Scholar
     

  • Neun, B. W., Barenholz, Y., Szebini, J. & Dobrovolskaia, J. M. Understanding the role of anti-PEG antibodies in the complement activation by doxil in vitro. Molecules 23, 1700 (2018).


    Google Scholar
     

  • Horváth, A. et al. Anti-cholesterol antibodies (ACHA) in patients with different atherosclerotic vascular diseases and healthy individuals. Characterization of human ACHA. Atherosclerosis 156, 185–192 (2001).


    Google Scholar
     

  • Alving, C. R. Natural antibodies against phospholipids and liposomes in humans. Biochem. Soc. Trans. 12, 342–344 (1984).

    CAS 

    Google Scholar
     

  • Kozma, G. T., Shimizu, T., Ishida, T. & Szebeni, J. Anti-PEG antibodies: properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals. Adv. Drug Deliv. Rev. 154-155, 163–175 (2020).

    CAS 

    Google Scholar
     

  • Suzuki, T. et al. PEG shedding-rate-dependent blood clearance of PEGylated lipid nanoparticles in mice: faster PEG shedding attenuates anti-PEG IgM production. Int J Pharm 588, 119792 (2020).

    CAS 

    Google Scholar
     

  • Kozma, G. T. et al. Pseudo-anaphylaxis to polyethylene glycol (PEG)-coated liposomes: roles of anti-PEG IgM and complement activation in a porcine model of human infusion reactions. ACS Nano 13, 9315–9324 (2019). Demonstrates the role of PEG-specific antibodies in complement activation related pseudoallergy. Reveals a similarity of hemodynamic changes in pigs to that of infusion reactions-related changes in humans

    CAS 

    Google Scholar
     

  • Jiang, H., Cooper, B., Robey, F. A. & Gewurz, H. DNA binds and activates complement via residues 14–26 of the human C1q A chain. J. Biol. Chem. 267, 25597–25601 (1992).

    CAS 

    Google Scholar
     

  • Pham, C. T. et al. Variable antibody-dependent activation of complement by functionalized phospholipid nanoparticle surfaces. J. Biol. Chem. 286, 123–130 (2011).

    CAS 

    Google Scholar
     

  • Sedic, M. et al. Safety evaluation of lipid nanoparticle-formulated modified mRNA in the Sprague-Dawley rat and cynomolgus monkey. Vet. Pathol. 55, 341–354 (2018).

    CAS 

    Google Scholar
     

  • Chonn, A., Cullis, P. R. & Devine, D. V. The role of surface charge in the activation of the classical and alternative pathways of complement by liposomes. J. Immunol. 146, 4234–4241 (1991).

    CAS 

    Google Scholar
     

  • Plank, C., Mechtler, K., Szoka, F. C. Jr. & Wagner, E. Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Hum. Gene Ther. 7, 1437–1446 (1996).

    CAS 

    Google Scholar
     

  • Sherman, M. R., Williams, L. D., Sobczyk, M. A., Michaels, S. J. & Saifer, M. G. Role of the methoxy group in immune responses to mPEG-protein conjugates. Bioconjug. Chem. 23, 485–499 (2012).

    CAS 

    Google Scholar
     

  • Comirnaty: Tozinameran/COVID-19 mRNA Vaccine (Nucleoside Modified) (European Medicines Agency, accessed 15 April 2021); https://www.ema.europa.eu/en/medicines/human/EPAR/comirnaty

  • mPEG-N,N-Ditetradecylacetamide (ALC-0159) (BiochemPEG, 2021); https://www.biochempeg.com/product/mPEG-N,N-Ditetradecylacetamide.html

  • Johnson, J. B., Aguilar, H. C., Lee, B. & Parks, G. D. Interactions of human complement with virus particles containing the Nipah virus glycoproteins. J. Virol. 85, 5940–5948 (2011).

    CAS 

    Google Scholar
     

  • Yu, J. et al. Direct activation of the alternative complement pathway by SARS-CoV-2 spike proteins is blocked by factor D inhibition. Blood 136, 2080–2089 (2020).


    Google Scholar
     

  • Kenawy, H. I., Boral, I., Bevington, A. & Complement-Coagulation Cross-talk: a potential mediator of the physiological activation of complement by low pH. Front. Immunol. 6, 215 (2015).


    Google Scholar
     

  • Ali, Y. M. et al. Lectin pathway mediates complement activation by SARS-CoV-2 proteins. Front. Immunol. 12, 714511 (2021).

    CAS 

    Google Scholar
     

  • Ogata, A. F. et al. Circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine antigen detected in the plasma of mRNA-1273 vaccine recipients. Clin. Infect. Dis. 2021, ciab465 (2021).


    Google Scholar
     

  • Crooke, S. T. et al. Integrated safety assessment of 2′-O-methoxyethyl chimeric antisense oligonucleotides in nonhuman primates and healthy human volunteers. Mol. Ther. 24, 1771–1782 (2016).

    CAS 

    Google Scholar
     

  • Schirinzi, A. et al. Pentraxin 3: potential prognostic role in SARS-CoV-2 patients admitted to the emergency department. J. Infect. 82, 84–123 (2021).

    CAS 

    Google Scholar
     

  • Kolev, M., Le Friec, G. & Kemper, C. Complement—tapping into new sites and effector systems. Nat Rev Immunol 14, 811–820 (2014).

    CAS 

    Google Scholar
     

  • Li, C. et al. Intravenous injection of COVID-19 mRNA vaccine can induce acute myopericarditis in mouse model. Clin. Infect. Dis. 2021, ciab707 (2021).


    Google Scholar
     

  • Krantz, M. S. et al. Anaphylaxis to the first dose of mRNA SARS-CoV-2 vaccines: don’t give up on the second dose! Allergy 76, 2916–2920 (2021).

    CAS 

    Google Scholar
     

  • Krantz, M. S. et al. Safety evaluation of the second dose of messenger RNA COVID-19 vaccines in patients with immediate reactions to the first dose. JAMA Intern. Med. 181, 1530–1533 (2021).


    Google Scholar
     

  • Szebeni, J. Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology 216, 106–121 (2005).

    CAS 

    Google Scholar
     

  • Ilinskaya, A. N. et al. Nanoparticle physicochemical properties determine the activation of intracellular complement. Nanomedicine 17, 266–275 (2019).

    CAS 

    Google Scholar
     

  • Oliver, S. E. et al. The Advisory Committee on Immunization Practices’ interim recommendation for use of Moderna COVID-19 vaccine—United States, December 2020. Morb. Mortal. Wkly Rep. 69, 1653–1656 (2021).

    CAS 

    Google Scholar
     

  • Stone, C. A. Jr. et al. Immediate hypersensitivity to polyethylene glycols and polysorbates: more common than we have recognized. J. Allergy Clin. Immunol. Pract. 7, 1533–1540.e8 (2019).


    Google Scholar
     

  • Zhou, Z. H. et al. Anti-PEG IgE in anaphylaxis associated with polyethylene glycol. J. Allergy Clin. Immunol. Pract. 9, 1731–1733.e3 (2021).


    Google Scholar
     

  • Selvaraj, G., Kaliamurthi, S., Peslherbe, G. H. & Wei, D. Q. Are the allergic reactions of COVID-19 vaccines caused by mRNA constructs or nanocarriers? Immunological insights. Interdiscip. Sci. 13, 344–347 (2021).

    CAS 

    Google Scholar
     

  • Kelso, J. M. IgE-mediated allergy to polyethylene glycol (PEG) as a cause of anaphylaxis to mRNA COVID-19 vaccines. Clin. Exp. Allergy 52, 10–11 (2021).


    Google Scholar
     

  • Sellaturay, P., Nasser, S., Islam, S., Gurugama, P. & Ewan, P. W. Polyethylene glycol (PEG) is a cause of anaphylaxis to the Pfizer/BioNTech mRNA COVID-19 vaccine. Clin. Exp. Allergy 51, 861–863 (2021).

    CAS 

    Google Scholar
     

  • Kaakati, R., Khokhar, D. & Akin, C. Safety of COVID-19 vaccination in patients with mastocytosis and monoclonal mast cell activation syndrome. J. Allergy Clin. Immunol. Pract. 9, 3198–3199 (2021).


    Google Scholar
     

  • Rama, T. A., Moreira, A. & Castells, M. mRNA COVID-19 vaccine is well tolerated in patients with cutaneous and systemic mastocytosis with mast cell activation symptoms and anaphylaxis. J. Allergy Clin. Immunol. 147, 877–878 (2021).

    CAS 

    Google Scholar
     

  • Lyons, J. J. et al. Elevated basal serum tryptase identifies a multisystem disorder associated with increased TPSAB1 copy number. Nat. Genet. 48, 1564–1569 (2016).

    CAS 

    Google Scholar
     

  • Passia, E. & Jandus, P. Using baseline and peak serum tryptase levels to diagnose anaphylaxis: a review. Clin. Rev. Allergy Immunol. 58, 366–376 (2020).


    Google Scholar
     

  • Pflipsen, M. C. & Vega Colon, K. M. Anaphylaxis: recognition and management. Am. Fam. Physician 102, 355–362 (2020).


    Google Scholar
     

  • Warren, C. M. et al. Assessment of allergic and anaphylactic reactions to mRNA COVID-19 vaccines with confirmatory testing in a US regional health system. JAMA Netw. Open 4, e2125524 (2021).


    Google Scholar
     

  • Ali, H. Regulation of human mast cell and basophil function by anaphylatoxins C3a and C5a. Immunol. Lett. 128, 36–45 (2010).

    CAS 

    Google Scholar
     

  • Li, Y. et al. Inter-individual variability and genetic influences on cytokine responses to bacteria and fungi. Nat. Med. 22, 952–960 (2016).


    Google Scholar
     

  • Li, Y. et al. A functional genomics approach to understand variation in cytokine production in humans. Cell 167, 1099–1110.e1014 (2016).

    CAS 

    Google Scholar
     

  • Dobrovolskaia, M. A. Pre-clinical immunotoxicity studies of nanotechnology-formulated drugs: challenges, considerations and strategy. J. Control Release 220, 571–583 (2015).

    CAS 

    Google Scholar
     

  • Van Hoecke, L. et al. The opposing effect of type I IFN on the T cell response by non-modified mRNA-lipoplex vaccines is determined by the route of administration. Mol. Ther. Nucleic Acids 22, 373–381 (2020).


    Google Scholar
     

  • Lei, H. et al. Cationic nanocarriers as potent adjuvants for recombinant S-RBD vaccine of SARS-CoV-2. Signal Transduct. Target. Ther. 5, 291 (2020).

    CAS 

    Google Scholar
     

  • Ivanov, K., Garanina, E., Rizvanov, A. & Khaiboullina, S. Inflammasomes as targets for adjuvants. Pathogens 9, 252 (2020).

    CAS 

    Google Scholar
     

  • Reinke, S., Thakur, A., Gartlan, C., Bezbradica, J. S. & Milicic, A. Inflammasome-mediated immunogenicity of clinical and experimental vaccine adjuvants. Vaccines 8, 554 (2020).

    CAS 

    Google Scholar
     

  • Hosoki, K., Itazawa, T., Boldogh, I. & Sur, S. Neutrophil recruitment by allergens contribute to allergic sensitization and allergic inflammation. Curr. Opin. Allergy Clin. Immunol. 16, 45–50 (2016).

    CAS 

    Google Scholar
     

  • Wittling, M. C., Cahalan, S. R., Levenson, E. A. & Rabin, R. L. Shared and unique features of human interferon-beta and interferon-alpha subtypes. Front. Immunol. 11, 605673 (2020).

    CAS 

    Google Scholar
     

  • Mezouar, S. & Mege, J. L. Changing the paradigm of IFN-γ at the interface between innate and adaptive immunity: macrophage-derived IFN-γ. J. Leukoc. Biol. 108, 419–426 (2020).

    CAS 

    Google Scholar
     

  • Cheng, M. H. et al. Superantigenic character of an insert unique to SARS-CoV-2 spike supported by skewed TCR repertoire in patients with hyperinflammation. Proc. Natl Acad. Sci. USA 117, 25254–25262 (2020).

    CAS 

    Google Scholar
     

  • Royall, J. A. et al. Tumor necrosis factor and interleukin 1 alpha increase vascular endothelial permeability. Am. J. Physiol. 257, L399–L410 (1989).

    CAS 

    Google Scholar
     

  • Burke-Gaffney, A. & Keenan, A. K. Modulation of human endothelial cell permeability by combinations of the cytokines interleukin-1 alpha/beta, tumor necrosis factor-alpha and interferon-gamma. Immunopharmacology 25, 1–9 (1993).

    CAS 

    Google Scholar
     

  • Dobrovolskaia, M. A. et al. Nanoparticle size and surface charge determine effects of PAMAM dendrimers on human platelets in vitro. Mol. Pharm. 9, 382–393 (2012).

    CAS 

    Google Scholar
     

  • Novakowski, S., Jiang, K., Prakash, G. & Kastrup, C. Delivery of mRNA to platelets using lipid nanoparticles. Sci. Rep. 9, 552 (2019).

    CAS 

    Google Scholar
     

  • Zhang, S. et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J. Hematol. Oncol. 13, 120 (2020).


    Google Scholar
     

  • Jimenez-Rodriguez, T. W., Garcia-Neuer, M., Alenazy, L. A. & Castells, M. Anaphylaxis in the 21st century: phenotypes, endotypes, and biomarkers. J. Asthma Allergy 11, 121–142 (2018).

    CAS 

    Google Scholar
     

  • Elzagallaai, A. A. et al. Role of oxidative stress in hypersensitivity reactions to sulfonamides. J. Clin. Pharmacol. 60, 409–421 (2020).

    CAS 

    Google Scholar
     

  • Mocan, T. et al. Implications of oxidative stress mechanisms in toxicity of nanoparticles (review). Acta Physiol. Hung. 97, 247–255 (2010).

    CAS 

    Google Scholar
     

  • Ilinskaya, A. N., Clogston, J. D., McNeil, S. E. & Dobrovolskaia, M. A. Induction of oxidative stress by Taxol vehicle Cremophor-EL triggers production of interleukin-8 by peripheral blood mononuclear cells through the mechanism not requiring de novo synthesis of mRNA. Nanomedicine 11, 1925–1938 (2015).

    CAS 

    Google Scholar
     

  • Dobrovolskaia, M. A. & McNeil, S. E. Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. J. Control Release 172, 456–466 (2013).

    CAS 

    Google Scholar
     

  • Tezel, G. et al. Oxidative stress and the regulation of complement activation in human glaucoma. Invest. Ophthalmol. Vis. Sci. 51, 5071–5082 (2010).


    Google Scholar
     

  • Fevang, B. et al. Common variable immunodeficiency and the complement system; low mannose-binding lectin levels are associated with bronchiectasis. Clin. Exp. Immunol. 142, 576–584 (2005).

    CAS 

    Google Scholar
     

  • Krebs, K. et al. Genome-wide study identifies association between HLA-B()55:01 and self-reported penicillin allergy. Am. J. Hum Genet. 107, 612–621 (2020).

    CAS 

    Google Scholar
     

  • Nakatani, K. et al. Identification of HLA-A*02:06:01 as the primary disease susceptibility HLA allele in cold medicine-related Stevens–Johnson syndrome with severe ocular complications by high-resolution NGS-based HLA typing. Sci. Rep. 9, 16240 (2019).


    Google Scholar
     

  • Profaizer, T., Pole, A., Monds, C., Delgado, J. C. & Lázár-Molnár, E. Clinical utility of next generation sequencing based HLA typing for disease association and pharmacogenetic testing. Hum. Immunol. 81, 354–360 (2020).

    CAS 

    Google Scholar
     

  • Shirayanagi, T. et al. Detection of abacavir-induced structural alterations in human leukocyte antigen-B*57:01 using phage display. Biol. Pharm. Bull. 43, 1007–1015 (2020).

    CAS 

    Google Scholar
     

  • Tangamornsuksan, W. et al. HLA genotypes and cold medicine-induced Stevens–Johnson syndrome/toxic epidermal necrolysis with severe ocular complications: a systematic review and meta-analysis. Sci. Rep. 10, 10589 (2020).

    CAS 

    Google Scholar
     

  • Profaizer, T. & Eckels, D. HLA alleles and drug hypersensitivity reactions. Int. J. Immunogenet. 39, 99–105 (2012).

    CAS 

    Google Scholar
     

  • Fernandez, C. A. et al. HLA-DRB1*07:01 is associated with a higher risk of asparaginase allergies. Blood 124, 1266–1276 (2014).

    CAS 

    Google Scholar
     

  • Nguyen, A. et al. Human leukocyte antigen susceptibility map for severe acute respiratory syndrome coronavirus 2. J. Virol. 94, 13 (2020).


    Google Scholar
     

  • 23andMe Releases Data on HLA-genetics of COVID-19 Vaccine Response (Inside Precision Medicine, 2021); https://www.clinicalomics.com/topics/patient-care/therapeutics/vaccines/23andme-releases-data-on-hla-genetics-of-covid-19-vaccine-response/?utm_medium=newsletter&utm_source=Clinical+OMICs+Update&utm_content=01&utm_campaign=Clinical+OMICs+Update_20211109&oly_enc_id=0917D2598689C8T

  • NIH Begins Study of Allergic Reactions to Moderna, Pfizer-BioNTech COVID-19 Vaccines (NIH News Releases, 2021); https://www.niaid.nih.gov/news-events/nih-begins-study-allergic-reactions-moderna-pfizer-biontech-covid-19-vaccines

  • Guidance for Health Care Providers: Understanding Severe Allergic Reactions to COVID-19 Vaccines (Toronto Public Health, 2021).

  • Lyons-Weiler, J. Pathogenic priming likely contributes to serious and critical illness and mortality in COVID-19 via autoimmunity. J. Transl. Autoimmun. 3, 100051 (2020).


    Google Scholar
     

  • Vojdani, A., Vojdani, E. & Kharrazian, D. Reaction of human monoclonal antibodies to SARS-CoV-2 proteins with tissue antigens: implications for autoimmune diseases. Front. Immunol. 11, 617089 (2020).

    CAS 

    Google Scholar
     

  • Thi, T. T. H. et al. The importance of poly(ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polymers 12, 252 (2020).


    Google Scholar
     

  • Schoenmaker, L. et al. mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability. Int. J. Pharm. 601, 120586 (2021).

    CAS 

    Google Scholar
     

  • Ndeupen, S. et al. The mRNA-LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. Iscience 24, 103479 (2021). Demonstrated in a mouse model that LNPs used for the delivery of mRNA vaccines cause a strong inflammatory response that contributes to the vaccine efficacy but is also responsible for the side effects.

    CAS 

    Google Scholar
     

  • Dézsi, L. et al. A naturally hypersensitive porcine model may help understand the mechanism of COVID-19 mRNA vaccine-induced rare (pseudo) allergic reactions: complement activation as a possible contributing factor. GeroScience 1–22 (2022). Demonstrates in a pig model that injection of Comirnaty (Pfizer/BioNTech) vaccine causes hemodynamic changes in animals that are similar to the changes characteristic of infusion reactions to nanomedicines.

  • Pfizer-BioNTech COVID-19 Vaccine—Fact Sheet for Healthcare Providers Administering Vaccine (FDA, accessed 15 April 2021); https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/pfizer-biontech-covid-19-vaccine#additional

  • Corbett K. S., et al. SARS-CoV-2 mRNA vaccine development enabled by prototype pathogen preparedness. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/2020.06.11.145920v1 (2020).

  • Vardi N. Moderna’s mysterious coronavirus vaccine delivery system. Forbes https://www.forbes.com/sites/nathanvardi/2020/07/29/modernas-mysterious-coronavirus-vaccine-delivery-system/?sh=3d2bcb8462d9 (2020).

  • Felgner, P. et al. Nomenclature for synthetic gene delivery systems. Human Gene Therapy 8, 511–512 (1997).

    CAS 

    Google Scholar
     

  • O’Shaughnessy J.A. Letter of Authorization to Pfizer (FDA, accessed 30 January 2022); https://www.fda.gov/media/150386/download

  • Adverse Events Reporting System (USFDA, accessed 15 March 2021); https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/fda-adverse-event-reporting-system-faers-public-dashboard

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published.