A transistor-like pH-sensitive nanodetergent for selective cancer therapy

[ad_1]

  • Hancock, R. E. W. & Sahl, H. G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24, 1551–1557 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Nederberg, F. et al. Biodegradable nanostructures with selective lysis of microbial membranes. Nat. Chem. 3, 409–414 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Trambas, C. M. & Griffiths, G. M. Delivering the kiss of death. Nat. Immunol. 4, 399–403 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Leung, C. et al. Real-time visualization of perforin nanopore assembly. Nat. Nanotechnol. 12, 467–473 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Fjell, C. D., Hiss, J. A., Hancock, R. E. W. & Schneider, G. Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov. 11, 37–51 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Park, N. H. et al. Addressing drug resistance in cancer with macromolecular chemotherapeutic agents. J. Am. Chem. Soc. 140, 4244–4252 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Magana, M. et al. The value of antimicrobial peptides in the age of resistance. Lancet Infect. Dis. 20, e216–e230 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Shen, W. et al. Antineoplastic drug-free anticancer strategy enabled by host-defense-peptides-mimicking synthetic polypeptides. Adv. Mater. 32, 2001108 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Mookherjee, N., Anderson, M. A., Haagsman, H. P. & Davidson, D. J. Antimicrobial host defence peptides: functions and clinical potential. Nat. Rev. Drug Discov. 19, 311–332 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Voskoboinik, I., Whisstock, J. C. & Trapani, J. A. Perforin and granzymes: function, dysfunction and human pathology. Nat. Rev. Immunol. 15, 388–400 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Tew, G. N., Scott, R. W., Klein, M. L. & Degrado, W. F. De novo design of antimicrobial polymers, foldamers, and small molecules: from discovery to practical applications. Acc. Chem. Res. 43, 30–39 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Palermo, E. F., Lienkamp, K., Gillies, E. R. & Ragogna, P. J. Antibacterial activity of polymers: discussions on the nature of amphiphilic balance. Angew. Chem. Int. Ed. Engl. 58, 3690–3693 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Liang, Y. B., Zhang, X. S., Yuan, Y. L., Bao, Y. & Xiong, M. H. Role and modulation of the secondary structure of antimicrobial peptides to improve selectivity. Biomater. Sci. 8, 6858–6866 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Mishra, B., Narayana, J. L., Lushnikova, T., Wang, X. Q. & Wang, G. S. Low cationicity is important for systemic in vivo efficacy of database-derived peptides against drug-resistant Gram-positive pathogens. Proc. Natl Acad. Sci. USA 116, 13517–13522 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Chin, W. et al. A macromolecular approach to eradicate multidrug resistant bacterial infections while mitigating drug resistance onset. Nat. Commun. 9, 917 (2018).

    Article 

    Google Scholar
     

  • de Breij, A. et al. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci. Transl. Med. 10, eaan4044 (2018).

    Article 

    Google Scholar
     

  • Xiong, M. et al. Helical antimicrobial polypeptides with radial amphiphilicity. Proc. Natl Acad. Sci. USA 112, 13155–13160 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Mowery, B. P., Lindner, A. H., Weisblum, B., Stahl, S. S. & Gellman, S. H. Structure–activity relationships among random nylon-3 copolymers that mimic antibacterial host-defense peptides. J. Am. Chem. Soc. 131, 9735–9745 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Fan, Y. et al. A biomimetic peptide recognizes and traps bacteria in vivo as human defensin-6. Sci. Adv. 6, eaaz4767 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Xiong, M. H. et al. Bacteria-assisted activation of antimicrobial polypeptides by a random-coil to helix transition. Angew. Chem. Int. Ed. 56, 10826–10829 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Xiong, M. H. et al. Selective killing of Helicobacter pylori with pH-responsive helix–coil conformation transitionable antimicrobial polypeptides. Proc. Natl Acad. Sci. USA 114, 12675–12680 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Qi, G. B., Zhang, D., Liu, F. H., Qiao, Z. Y. & Wang, H. An “on-site transformation” strategy for treatment of bacterial infection. Adv. Mater. 29, 1703461 (2017).

    Article 

    Google Scholar
     

  • Wang, Y. G. et al. A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals. Nat. Mater. 13, 204–212 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Zhao, T. et al. A transistor-like pH nanoprobe for tumour detection and image-guided surgery. Nat. Biomed. Eng. 1, 0006 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Webb, B. A., Chimenti, M., Jacobson, M. P. & Barber, D. L. Dysregulated pH: a perfect storm for cancer progression. Nat. Rev. Cancer 11, 671–677 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Anderson, M., Moshnikova, A., Engelman, D. M., Reshetnyak, Y. K. & Andreev, O. A. Probe for the measurement of cell surface pH in vivo and ex vivo. Proc. Natl Acad. Sci. USA 113, 8177–8181 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Gerweck, L. E. & Seetharaman, K. Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res. 56, 1194–1198 (1996).

    CAS 

    Google Scholar
     

  • Feng, L. Z., Dong, Z. L., Tao, D. L., Zhang, Y. C. & Liu, Z. The acidic tumor microenvironment: a target for smart cancer nano-theranostics. Natl Sci. Rev. 5, 269–286 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Sun, L. et al. MiR-200b and miR-15b regulate chemotherapy-induced epithelial-mesenchymal transition in human tongue cancer cells by targeting BMI1. Oncogene 31, 432–445 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Meyer, E. A., Castellano, R. K. & Diederich, F. Interactions with aromatic rings in chemical and biological recognition. Angew. Chem. Int. Ed. 42, 1210–1250 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Dougherty, D. A. Cation-π interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science 271, 163–168 (1996).

    CAS 
    Article 

    Google Scholar
     

  • Li, Y. et al. Chaotropic-anion-induced supramolecular self-assembly of ionic polymeric micelles. Angew. Chem. Int. Ed. 53, 8074–8078 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Riedl, S. et al. In search of a novel target—phosphatidylserine exposed by non-apoptotic tumor cells and metastases of malignancies with poor treatment efficacy. Biochim. Biophys. Acta Biomembr. 1808, 2638–2645 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Birge, R. B. et al. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death Differ. 23, 962–978 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Ma, X. P. et al. Ultra-pH-sensitive nanoprobe library with broad pH tunability and fluorescence emissions. J. Am. Chem. Soc. 136, 11085–11092 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Li, H. J. et al. Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: instantaneous size switching and improved tumor penetration. ACS Nano 10, 6753–6761 (2016).

    CAS 
    Article 

    Google Scholar
     

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published.